7 resultados para Thermo-optic coefficients
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
Scanning Probe Microscopy (SPM) has become of fundamental importance for research in area of micro and nano-technology. The continuous progress in these fields requires ultra sensitive measurements at high speed. The imaging speed limitation of the conventional Tapping Mode SPM is due to the actuation time constant of piezotube feedback loop that keeps the tapping amplitude constant. In order to avoid this limit a deflection sensor and an actuator have to be integrated into the cantilever. In this work has been demonstrated the possibility of realisation of piezoresistive cantilever with an embedded actuator. Piezoresistive detection provides a good alternative to the usual optical laser beam deflection technique. In frames of this thesis has been investigated and modelled the piezoresistive effect in bulk silicon (3D case) for both n- and p-type silicon. Moving towards ultra-sensitive measurements it is necessary to realize ultra-thin piezoresistors, which are well localized to the surface, where the stress magnitude is maximal. New physical effects such as quantum confinement which arise due to the scaling of the piezoresistor thickness was taken into account in order to model the piezoresistive effect and its modification in case of ultra-thin piezoresistor (2D case). The two-dimension character of the electron gas in n-type piezoresistors lead up to decreasing of the piezoresistive coefficients with increasing the degree of electron localisation. Moreover for p-type piezoresistors the predicted values of the piezoresistive coefficients are higher in case of localised holes. Additionally, to the integration of the piezoresistive sensor, actuator integrated into the cantilever is considered as fundamental for realisation of fast SPM imaging. Actuation of the beam is achieved thermally by relying on differences in the coefficients of thermal expansion between aluminum and silicon. In addition the aluminum layer forms the heating micro-resistor, which is able to accept heating impulses with frequency up to one megahertz. Such direct oscillating thermally driven bimorph actuator was studied also with respect to the bimorph actuator efficiency. Higher eigenmodes of the cantilever are used in order to increase the operating frequencies. As a result the scanning speed has been increased due to the decreasing of the actuation time constant. The fundamental limits to force sensitivity that are imposed by piezoresistive deflection sensing technique have been discussed. For imaging in ambient conditions the force sensitivity is limited by the thermo-mechanical cantilever noise. Additional noise sources, connected with the piezoresistive detection are negligible.
Resumo:
In this paper, we solve the duplication problem P_n(ax) = sum_{m=0}^{n}C_m(n,a)P_m(x) where {P_n}_{n>=0} belongs to a wide class of polynomials, including the classical orthogonal polynomials (Hermite, Laguerre, Jacobi) as well as the classical discrete orthogonal polynomials (Charlier, Meixner, Krawtchouk) for the specific case a = −1. We give closed-form expressions as well as recurrence relations satisfied by the duplication coefficients.
Resumo:
In this paper we derive an identity for the Fourier coefficients of a differentiable function f(t) in terms of the Fourier coefficients of its derivative f'(t). This yields an algorithm to compute the Fourier coefficients of f(t) whenever the Fourier coefficients of f'(t) are known, and vice versa. Furthermore this generates an iterative scheme for N times differentiable functions complementing the direct computation of Fourier coefficients via the defining integrals which can be also treated automatically in certain cases.
Resumo:
Im Rahmen der vorliegenden Arbeit wird ein Konzept zur mechanismenorientierten Lebensdauervorhersage entwickelt und auf eine Flanschwelle mit gradiertem Gefüge übertragen. Das Konzept wird in Form eines Computercodes (LOCC) zur Anwendung gebracht. Basierend auf lokalen Spannungen wird für jedes Element eines FE-Modells eine bedingte Versagenswahrscheinlichkeit berechnet. Mithilfe bruch- und ggf. mikromechanischer Modelle werden lokale kritische Risslängen und die bei gegebener Lebensdauer zugehörigen Anfangsrisslängen bestimmt. Diese werden mit geeigneten Modellen in mikrostrukturelle Größen überführt. Die Lebensdauerverteilung der Komponente ergibt sich schließlich aus der Verteilungsfunktion der Anfangsrisslängen bzw. der zugehörigen mikrostrukturellen Einheiten. Die betrachtete Flanschwelle weist als Ergebnis eines thermo-mechanischen Umformprozesses ein gradiertes Gefüge auf. Das Ermüdungsverhalten der Hauptphasen Ferrit-Perlit und Martensit wird untersucht. Während ausgewählter Ermüdungsversuche wird die Schädigungsentwicklung an der Oberfläche mit einem langreichweitigen Mikroskop beobachtet. Das ferritisch-perlitische Ausgangsgefüge zeigt eine sehr komplexe Schädigungsentwicklung (lokale plastische Aktivität, hohe Rissdichte), während beim Martensit keine multiple Rissinitiierung beobachtet wird. Anhand fraktographischer Untersuchungen wird dargelegt, dass der Hauptriss beim Martensit im Bereich von Karbidanhäufungen initiiert. Im LCF-Bereich wird nur ein verschwindender Anteil der Lebensdauer mit Langrisswachstum verbracht, d. h. die martensitischen Proben versagen fast unmittelbar nach der Rissinitiierung. Die Beschreibung ihrer Lebensdauer wird somit direkt auf die Rissinitiierungsphase zurückgeführt. Das ferritisch-perlitische Gefüge hingegen zeigt im LCF-Bereich sowohl eine ausgeprägte Rissinitiierungs- wie auch Langrisswachstumsphase. Diese komplexe Schädigungsentwicklung wird mittels verschiedener Schädigungsvariablen beschrieben, die im Rahmen einer automatisierten Bildanalyse bestimmt werden. Hierbei werden sowohl plastisch stark aktive Bereiche wie auch reale Risse pauschal als Schädigung definiert. Der Vergleich dieser automatisiert bestimmten Schädigungsvariablen mit ausgewählten Rissen zeigt deren Eignung zur quantitativen Beschreibung der Schädigungsentwicklung. Die Lebensdauer einer gradierten Komponente ergibt sich nicht direkt durch Verknüpfung der Lebensdauern der Einzelphasen, sondern sie hängt ggf. auch von den Übergangsbereichen zwischen den Phasen ab. Mithilfe einiger grundlegender bruchmechanischer Überlegungen wird ein konservatives Kriterium zur Behandlung solcher Übergangsbereiche bereitgestellt, womit das LOCC-Konzept letztendlich erfolgreich auf die gradierte Flanschwelle übertragen wird.
Resumo:
Die thermische Verarbeitung von Lebensmitteln beeinflusst deren Qualität und ernährungsphysiologischen Eigenschaften. Im Haushalt ist die Überwachung der Temperatur innerhalb des Lebensmittels sehr schwierig. Zudem ist das Wissen über optimale Temperatur- und Zeitparameter für die verschiedenen Speisen oft unzureichend. Die optimale Steuerung der thermischen Zubereitung ist maßgeblich abhängig von der Art des Lebensmittels und der äußeren und inneren Temperatureinwirkung während des Garvorgangs. Das Ziel der Arbeiten war die Entwicklung eines automatischen Backofens, der in der Lage ist, die Art des Lebensmittels zu erkennen und die Temperatur im Inneren des Lebensmittels während des Backens zu errechnen. Die für die Temperaturberechnung benötigten Daten wurden mit mehreren Sensoren erfasst. Hierzu kam ein Infrarotthermometer, ein Infrarotabstandssensor, eine Kamera, ein Temperatursensor und ein Lambdasonde innerhalb des Ofens zum Einsatz. Ferner wurden eine Wägezelle, ein Strom- sowie Spannungs-Sensor und ein Temperatursensor außerhalb des Ofens genutzt. Die während der Aufheizphase aufgenommen Datensätze ermöglichten das Training mehrerer künstlicher neuronaler Netze, die die verschiedenen Lebensmittel in die entsprechenden Kategorien einordnen konnten, um so das optimale Backprogram auszuwählen. Zur Abschätzung der thermische Diffusivität der Nahrung, die von der Zusammensetzung (Kohlenhydrate, Fett, Protein, Wasser) abhängt, wurden mehrere künstliche neuronale Netze trainiert. Mit Ausnahme des Fettanteils der Lebensmittel konnten alle Komponenten durch verschiedene KNNs mit einem Maximum von 8 versteckten Neuronen ausreichend genau abgeschätzt werden um auf deren Grundlage die Temperatur im inneren des Lebensmittels zu berechnen. Die durchgeführte Arbeit zeigt, dass mit Hilfe verschiedenster Sensoren zur direkten beziehungsweise indirekten Messung der äußeren Eigenschaften der Lebensmittel sowie KNNs für die Kategorisierung und Abschätzung der Lebensmittelzusammensetzung die automatische Erkennung und Berechnung der inneren Temperatur von verschiedensten Lebensmitteln möglich ist.
Resumo:
In this work, we have mainly achieved the following: 1. we provide a review of the main methods used for the computation of the connection and linearization coefficients between orthogonal polynomials of a continuous variable, moreover using a new approach, the duplication problem of these polynomial families is solved; 2. we review the main methods used for the computation of the connection and linearization coefficients of orthogonal polynomials of a discrete variable, we solve the duplication and linearization problem of all orthogonal polynomials of a discrete variable; 3. we propose a method to generate the connection, linearization and duplication coefficients for q-orthogonal polynomials; 4. we propose a unified method to obtain these coefficients in a generic way for orthogonal polynomials on quadratic and q-quadratic lattices. Our algorithmic approach to compute linearization, connection and duplication coefficients is based on the one used by Koepf and Schmersau and on the NaViMa algorithm. Our main technique is to use explicit formulas for structural identities of classical orthogonal polynomial systems. We find our results by an application of computer algebra. The major algorithmic tools for our development are Zeilberger’s algorithm, q-Zeilberger’s algorithm, the Petkovšek-van-Hoeij algorithm, the q-Petkovšek-van-Hoeij algorithm, and Algorithm 2.2, p. 20 of Koepf's book "Hypergeometric Summation" and it q-analogue.