11 resultados para Technological parameters
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
Das Gewindefurchen ist ein spanloses Fertigungsverfahren zur Herstellung von Innengewinden. Es bietet wesentliche Vorteile gegenüber der spanenden Innengewindeherstellung, wie z.B. keine Notwendigkeit zur Spanentsorgung, höhere Festigkeit der Gewindeflanken und eine erhöhte Prozessgeschwindigkeit. Um die Vorteile des Verfahrens unter wirtschaftlichen und technologischen Aspekten besser auszunutzen, bietet die Weiterentwicklung der Werkzeuggeometrie sowohl im makroskopischen als auch im mikroskopischen Bereich ein enormes Potential, welches nicht nur bezüglich der Standzeit bzw. Standmenge und Prozessgeschwindigkeit, sondern auch hinsichtlich der Qualität der erzeugten Gewinde erschlossen werden sollte. Durch die empirische Untersuchung der technischen und physikalischen Eigenschaften am Gewindefurcher sollen der Anformbereich und die Formkeilgeometrie in Abhängigkeit verschiedener Prozessparameter und Werkstoffe verbessert werden, um optimale Bearbeitungsergebnisse hinsichtlich der hergestellten Gewindefurchen und des auftretenden Verschleißes am Gewindefurcher bzw. Formkeils zu erreichen. Die Basis dieser Untersuchungen bildet ein neuartiger Modellversuch, bei dem modifizierte Gewindefurcher verwendet werden, die derart umgestaltet sind, dass von einem üblichen Gewindefurcher durch Umschleifen nur noch ein einzelner Gewindegang am Werkzeug verbleibt. Dadurch ist es möglich, in einer vergrößerten Vorbohrung mit einem Formkeil die einzelnen Umformstufen beim Gewindefurchen separat zu fertigen, die auftretenden Prozesskräfte während des Eingriffs in das Werkstück zu messen und das Bearbeitungsergebnis im Werkstück und den Verschleiß am Formkeil zu bewerten. Weiterhin wird eine rein theoretische Methode beschrieben, mit der die Berechnung der Umformkraft und darauf basierend der Furchmomente am Formkeil bzw. dem ganzen Gewindefurcher möglich ist. Durch die Kenntnis der berechneten Kräfte und Momente am einzelnen Formkeil bzw. dem Gewindefurcher kann bereits in der Konzeptionsphase eines Gewindefurchers eine Anpassung des Werkszeuges an die jeweiligen Bearbeitungsanforderungen durchgeführt werden, wodurch der Entwurf von Gewindefurchern wesentlich wirtschaftlicher realisierbar ist, als durch rein empirische Herangehensweisen.
Resumo:
The rapid growth of the optical communication branches and the enormous demand for more bandwidth require novel networks such as dense wavelength division multiplexing (DWDM). These networks enable higher bitrate transmission using the existing optical fibers. Micromechanically tunable optical microcavity devices like VCSELs, Fabry-Pérot filters and photodetectors are core components of these novel DWDM systems. Several air-gap based tunable devices were successfully implemented in the last years. Even though these concepts are very promising, two main disadvantages are still remaining. On the one hand, the high fabrication and integration cost and on the other hand the undesired adverse buckling of the suspended membranes. This thesis addresses these two problems and consists of two main parts: • PECVD dielectric material investigation and stress control resulting in membranes shape engineering. • Implementation and characterization of novel tunable optical devices with tailored shapes of the suspended membranes. For this purposes, low-cost PECVD technology is investigated and developed in detail. The macro- and microstress of silicon nitride and silicon dioxide are controlled over a wide range. Furthermore, the effect of stress on the optical and mechanical properties of the suspended membranes and on the microcavities is evaluated. Various membrane shapes (concave, convex and planar) with several radii of curvature are fabricated. Using this resonator shape engineering, microcavity devices such as non tunable and tunable Fabry-Pérot filters, VCSELs and PIN photodetectors are succesfully implemented. The fabricated Fabry-Pérot filters cover a spectral range of over 200nm and show resonance linewidths down to 1.5nm. By varying the stress distribution across the vertical direction within a DBR, the shape and the radius of curvature of the top membrane are explicitely tailored. By adjusting the incoming light beam waist to the curvature, the fundamental resonant mode is supported and the higher order ones are suppressed. For instance, a tunable VCSEL with 26 nm tuning range, 400µW maximal output power, 47nm free spectral range and over 57dB side mode suppresion ratio (SMSR) is demonstrated. Other technologies, such as introducing light emitting organic materials in microcavities are also investigated.
Resumo:
This work presents Bayes invariant quadratic unbiased estimator, for short BAIQUE. Bayesian approach is used here to estimate the covariance functions of the regionalized variables which appear in the spatial covariance structure in mixed linear model. Firstly a brief review of spatial process, variance covariance components structure and Bayesian inference is given, since this project deals with these concepts. Then the linear equations model corresponding to BAIQUE in the general case is formulated. That Bayes estimator of variance components with too many unknown parameters is complicated to be solved analytically. Hence, in order to facilitate the handling with this system, BAIQUE of spatial covariance model with two parameters is considered. Bayesian estimation arises as a solution of a linear equations system which requires the linearity of the covariance functions in the parameters. Here the availability of prior information on the parameters is assumed. This information includes apriori distribution functions which enable to find the first and the second moments matrix. The Bayesian estimation suggested here depends only on the second moment of the prior distribution. The estimation appears as a quadratic form y'Ay , where y is the vector of filtered data observations. This quadratic estimator is used to estimate the linear function of unknown variance components. The matrix A of BAIQUE plays an important role. If such a symmetrical matrix exists, then Bayes risk becomes minimal and the unbiasedness conditions are fulfilled. Therefore, the symmetry of this matrix is elaborated in this work. Through dealing with the infinite series of matrices, a representation of the matrix A is obtained which shows the symmetry of A. In this context, the largest singular value of the decomposed matrix of the infinite series is considered to deal with the convergence condition and also it is connected with Gerschgorin Discs and Poincare theorem. Then the BAIQUE model for some experimental designs is computed and compared. The comparison deals with different aspects, such as the influence of the position of the design points in a fixed interval. The designs that are considered are those with their points distributed in the interval [0, 1]. These experimental structures are compared with respect to the Bayes risk and norms of the matrices corresponding to distances, covariance structures and matrices which have to satisfy the convergence condition. Also different types of the regression functions and distance measurements are handled. The influence of scaling on the design points is studied, moreover, the influence of the covariance structure on the best design is investigated and different covariance structures are considered. Finally, BAIQUE is applied for real data. The corresponding outcomes are compared with the results of other methods for the same data. Thereby, the special BAIQUE, which estimates the general variance of the data, achieves a very close result to the classical empirical variance.
Resumo:
Physikalische Grundlagenforschung und anwendungsorientierte physikalische Forschung auf den Gebieten nanoskaliger kristalliner und amorpher fester Körper haben in vielfacher Weise eine große Bedeutung. Neben dem Verständnis für die Struktur der Materie und die Wechselwirkung von Objekten von der Größe einiger Atome ist die Erkenntnis über die physikalischen Eigenschaften nanostrukturierter Systeme von hohem Interesse. Diese Forschung eröffnet die Möglichkeit, die mit der Mikroelektronik begonnene Miniaturisierung fortzusetzen und wird darüber hinaus neue Anwendungsfelder eröffnen. Das Erarbeiten der physikalischen Grundlagen der Methoden zur Herstellung und Strukturierung ist dabei zwingend notwendig, da hier Wirkungsprinzipien dominieren, die erst bei Strukturgrößen im Nanometerbereich auftreten oder hinreichend stark ausgeprägt sind. Insbesondere Halbleitermaterialien sind hier von großem Interesse. Die in dieser Arbeit untersuchten Resonatorstrukturen, die auf dem kristallinen Verbindungshalbleitermaterial GaInAsP/InP basieren, erschließen wichtige Anwendungsfelder im Bereich der optischen Datenübertragung sowie der optischen Sensorik. Hergestellt wird das Halbleitermaterial mit der Metallorganischen Gasphasenepitaxie. Die experimentell besimmten Kenngrößen lassen Rückschlüsse auf die Güte der Materialien, die quantenmechanischen Wirkungsprinzipien und die Bauelementcharakteristik zu und führen zu optimal angepassten Kristallstrukturen. Auf Basis dieser optimierten Materialien wurde ein durchstimmbarer Fabry-Perot-Filter hergestellt, der aus einer Kombination aus InP-Membranen und Luftspalten besteht und elektromechanisch aktuiert werden kann. Das GaInAsP dient hierbei als wenige hundert nm dicke Opferschicht, die ätztechnisch hochselektiv beseitigt wird. Die Qualität der Grenzflächen zum InP ist entscheidend für die Qualität der freigeätzten Kavitäten und damit für die mechanische Gesamtstabilität der Struktur. Der in dieser Arbeit beschriebene Filter hat eine Zentralwellenlänge im Bereich von 1550 nm und weist einen Durchstimmbereich von 221 nm auf. Erzielt wurde dieser Wert durch ein konsistentes Modell der wirkenden Verspannungskomponenten und einer optimierten epitaktischen Kontrolle der Verspannungsparameter. Das realisierte Filterbauelement ist vielversprechend für den Einsatz in der optischen Kommunikation im Bereich von WDM (wavelength division multiplexing) Anwendungen. Als weitere Resonatorstrukur wurde ein Asymmetrisch gekoppelter Quantenfilm als optisch aktives Medium, bestehend aus GaInAsP mit variierender Materialkomposition und Verspannung, untersucht, um sein Potential für eine breitbandige Emission zu untersuchen und mit bekannten Modellen zu vergleichen. Als Bauelementdesign wurde eine kantenemittierende Superlumineszenzleuchtdiode gewählt. Das Ergebnis ist eine Emissionskurve von 100 nm, die eine höhere Unabhängigkeit vom Injektionsstrom aufweist als andere bekannte Konzepte. Die quantenmechanischen Wirkungsprinzipien - im wesentlichen die Kopplung der beiden asymmetrischen Potentialtöpfe und die damit verbundene Kopplung der Wellenfunktionen - werden qualitativ diskutiert. Insgesamt bestätigt sich die Eignung des Materials GaInAsP auch für neuartige, qualitativ höchst anspruchsvolle Resonatorstrukturen und die Bedeutung der vorgestellten und untersuchten Resonatorkonzepte. Die vorgestellten Methoden, Materialien und Bauelemente liefern aufgrund ihrer Konzeption und der eingehenden experimentellen Untersuchungen einen Beitrag sowohl zu den zugrunde liegenden mechanischen, optoelektronischen und quantenmechanischen Wirkungsprinzipien der Strukturen, als auch zur Realisierung neuer optoelektronischer Bauelemente.
Resumo:
Lasers play an important role for medical, sensoric and data storage devices. This thesis is focused on design, technology development, fabrication and characterization of hybrid ultraviolet Vertical-Cavity Surface-Emitting Lasers (UV VCSEL) with organic laser-active material and inorganic distributed Bragg reflectors (DBR). Multilayer structures with different layer thicknesses, refractive indices and absorption coefficients of the inorganic materials were studied using theoretical model calculations. During the simulations the structure parameters such as materials and thicknesses have been varied. This procedure was repeated several times during the design optimization process including also the feedback from technology and characterization. Two types of VCSEL devices were investigated. The first is an index coupled structure consisting of bottom and top DBR dielectric mirrors. In the space in between them is the cavity, which includes active region and defines the spectral gain profile. In this configuration the maximum electrical field is concentrated in the cavity and can destroy the chemical structure of the active material. The second type of laser is a so called complex coupled VCSEL. In this structure the active material is placed not only in the cavity but also in parts of the DBR structure. The simulations show that such a distribution of the active material reduces the required pumping power for reaching lasing threshold. High efficiency is achieved by substituting the dielectric material with high refractive index for the periods closer to the cavity. The inorganic materials for the DBR mirrors have been deposited by Plasma- Enhanced Chemical Vapor Deposition (PECVD) and Dual Ion Beam Sputtering (DIBS) machines. Extended optimizations of the technological processes have been performed. All the processes are carried out in a clean room Class 1 and Class 10000. The optical properties and the thicknesses of the layers are measured in-situ by spectroscopic ellipsometry and spectroscopic reflectometry. The surface roughness is analyzed by atomic force microscopy (AFM) and images of the devices are taken with scanning electron microscope (SEM). The silicon dioxide (SiO2) and silicon nitride (Si3N4) layers deposited by the PECVD machine show defects of the material structure and have higher absorption in the ultra violet range compared to ion beam deposition (IBD). This results in low reflectivity of the DBR mirrors and also reduces the optical properties of the VCSEL devices. However PECVD has the advantage that the stress in the layers can be tuned and compensated, in contrast to IBD at the moment. A sputtering machine Ionsys 1000 produced by Roth&Rau company, is used for the deposition of silicon dioxide (SiO2), silicon nitride (Si3N4), aluminum oxide (Al2O3) and zirconium dioxide (ZrO2). The chamber is equipped with main (sputter) and assisted ion sources. The dielectric materials were optimized by introducing additional oxygen and nitrogen into the chamber. DBR mirrors with different material combinations were deposited. The measured optical properties of the fabricated multilayer structures show an excellent agreement with the results of theoretical model calculations. The layers deposited by puttering show high compressive stress. As an active region a novel organic material with spiro-linked molecules is used. Two different materials have been evaporated by utilizing a dye evaporation machine in the clean room of the department Makromolekulare Chemie und Molekulare Materialien (mmCmm). The Spiro-Octopus-1 organic material has a maximum emission at the wavelength λemission = 395 nm and the Spiro-Pphenal has a maximum emission at the wavelength λemission = 418 nm. Both of them have high refractive index and can be combined with low refractive index materials like silicon dioxide (SiO2). The sputtering method shows excellent optical quality of the deposited materials and high reflection of the multilayer structures. The bottom DBR mirrors for all VCSEL devices were deposited by the DIBS machine, whereas the top DBR mirror deposited either by PECVD or by combination of PECVD and DIBS. The fabricated VCSEL structures were optically pumped by nitrogen laser at wavelength λpumping = 337 nm. The emission was measured by spectrometer. A radiation of the VCSEL structure at wavelength 392 nm and 420 nm is observed.
Resumo:
A real-time analysis of renewable energy sources, such as arable crops, is of great importance with regard to an optimised process management, since aspects of ecology and biodiversity are considered in crop production in order to provide a sustainable energy supply by biomass. This study was undertaken to explore the potential of spectroscopic measurement procedures for the prediction of potassium (K), chloride (Cl), and phosphate (P), of dry matter (DM) yield, metabolisable energy (ME), ash and crude fibre contents (ash, CF), crude lipid (EE), nitrate free extracts (NfE) as well as of crude protein (CP) and nitrogen (N), respectively in pretreated samples and undisturbed crops. Three experiments were conducted, one in a laboratory using near infrared reflectance spectroscopy (NIRS) and two field spectroscopic experiments. Laboratory NIRS measurements were conducted to evaluate to what extent a prediction of quality parameters is possible examining press cakes characterised by a wide heterogeneity of their parent material. 210 samples were analysed subsequent to a mechanical dehydration using a screw press. Press cakes serve as solid fuel for thermal conversion. Field spectroscopic measurements were carried out with regard to further technical development using different field grown crops. A one year lasting experiment over a binary mixture of grass and red clover examined the impact of different degrees of sky cover on prediction accuracies of distinct plant parameters. Furthermore, an artificial light source was used in order to evaluate to what extent such a light source is able to minimise cloud effects on prediction accuracies. A three years lasting experiment with maize was conducted in order to evaluate the potential of off-nadir measurements inside a canopy to predict different quality parameters in total biomass and DM yield using one sensor for a potential on-the-go application. This approach implements a measurement of the plants in 50 cm segments, since a sensor adjusted sideways is not able to record the entire plant height. Calibration results obtained by nadir top-of-canopy reflectance measurements were compared to calibration results obtained by off-nadir measurements. Results of all experiments approve the applicability of spectroscopic measurements for the prediction of distinct biophysical and biochemical parameters in the laboratory and under field conditions, respectively. The estimation of parameters could be conducted to a great extent with high accuracy. An enhanced basis of calibration for the laboratory study and the first field experiment (grass/clover-mixture) yields in improved robustness of calibration models and allows for an extended application of spectroscopic measurement techniques, even under varying conditions. Furthermore, off-nadir measurements inside a canopy yield in higher prediction accuracies, particularly for crops characterised by distinct height increment as observed for maize.
Resumo:
High-speed semiconductor lasers are an integral part in the implemen- tation of high-bit-rate optical communications systems. They are com- pact, rugged, reliable, long-lived, and relatively inexpensive sources of coherent light. Due to the very low attenuation window that exists in the silica based optical fiber at 1.55 μm and the zero dispersion point at 1.3 μm, they have become the mainstay of optical fiber com- munication systems. For the fabrication of lasers with gratings such as, distributed bragg reflector or distributed feedback lasers, etching is the most critical step. Etching defines the lateral dimmensions of the structure which determines the performance of optoelectronic devices. In this thesis studies and experiments were carried out about the exist- ing etching processes for InP and a novel dry etching process was de- veloped. The newly developed process was based on Cl2/CH4/H2/Ar chemistry and resulted in very smooth surfaces and vertical side walls. With this process the grating definition was significantly improved as compared to other technological developments in the respective field. A surface defined grating definition approach is used in this thesis work which does not require any re-growth steps and makes the whole fabrication process simpler and cost effective. Moreover, this grating fabrication process is fully compatible with nano-imprint lithography and can be used for high throughput low-cost manufacturing. With usual etching techniques reported before it is not possible to etch very deep because of aspect ratio dependent etching phenomenon where with increasing etch depth the etch rate slows down resulting in non-vertical side walls and footing effects. Although with our de- veloped process quite vertical side walls were achieved but footing was still a problem. To overcome the challenges related to grating defini- tion and deep etching, a completely new three step gas chopping dry etching process was developed. This was the very first time that a time multiplexed etching process for an InP based material system was demonstrated. The developed gas chopping process showed extra ordinary results including high mask selectivity of 15, moderate etch- ing rate, very vertical side walls and a record high aspect ratio of 41. Both the developed etching processes are completely compatible with nano imprint lithography and can be used for low-cost high-throughput fabrication. A large number of broad area laser, ridge waveguide laser, distributed feedback laser, distributed bragg reflector laser and coupled cavity in- jection grating lasers were fabricated using the developed one step etch- ing process. Very extensive characterization was done to optimize all the important design and fabrication parameters. The devices devel- oped have shown excellent performance with a very high side mode suppression ratio of more than 52 dB, an output power of 17 mW per facet, high efficiency of 0.15 W/A, stable operation over temperature and injected currents and a threshold current as low as 30 mA for almost 1 mm long device. A record high modulation bandwidth of 15 GHz with electron-photon resonance and open eye diagrams for 10 Gbps data transmission were also shown.
Resumo:
Extensive grassland biomass for bioenergy production has long been subject of scientific research. The possibility of combining nature conservation goals with a profitable management while reducing competition with food production has created a strong interest in this topic. However, the botanical composition will play a key role for solid fuel quality of grassland biomass and will have effects on the combustion process by potentially causing corrosion, emission and slagging. On the other hand, botanical composition will affect anaerobic digestibility and thereby the biogas potential. In this thesis aboveground biomass from the Jena-Experiment plots was harvested in 2008 and 2009 and analysed for the most relevant chemical constituents effecting fuel quality and anaerobic digestibility. Regarding combustion, the following parameters were of main focus: higher heating value (HHV), gross energy yield (GE), ash content, ash softening temperature (AST), K, Ca, Mg, N, Cl and S content. For biogas production the following parameters were investigated: substrate specific methane yield (CH4 sub), area specific methane yield (CH4 area), crude fibre (CF), crude protein (CP), crude lipid (CL) and nitrogen-free extract (NfE). Furthermore, an improvement of the fuel quality was investigated through applying the Integrated generation of solid Fuel and Biogas from Biomass (IFBB) procedure. Through the specific setup of the Jena-Experiment it was possible to outline the changes of these parameters along two diversity gradients: (i) species richness (SR; 1 to 60 species) and (ii) functional group (grasses, legumes, small herbs and tall herbs) presence. This was a novel approach on investigating the bioenergy characteristic of extensive grassland biomass and gave detailed insight in the sward-composition¬ - bioenergy relations such as: (i) the most relevant SR effect was the increase of energy yield for both combustion (annual GE increased by 26% from SR8→16 and by 65% from SR8→60) and anaerobic digestion (annual CH4 area increased by 22% from SR8→16 and by 49% from SR8→60) through a strong interaction of SR with biomass yield; (ii) legumes play a key role for the utilization of grassland biomass for energy production as they increase the energy content of the substrate (HHV and CH4 sub) and the energy yield (GE and CH4 area); (iii) combustion is the conversion technique that will yield the highest energy output but requires an improvement of the solid fuel quality in order to reduce the risk of corrosion, emission and slagging related problems. This was achieved through applying the IFBB-procedure, with reductions in ash (by 23%), N (28%), K (85%), Cl (56%) and S (59%) and equal levels of concentrations along the SR gradient.
Resumo:
Micromirror arrays are a very strong candidate for future energy saving applications. Within this work, the fabrication process for these micromirror arrays has been optimized and some steps for the large area fabrication of micromirror modules were performed. At first the surface roughness of the insulation layer of silicon dioxide (SiO2) was investigated. This SiO2 thin layer was deposited on three different type of substrates i.e. silicon, glass and Polyethylene Naphthalate (PEN) substrates. The deposition techniques which has been used are Plasma Enhanced Chemical Vapor Deposition (PECVD), Physical Vapor Deposition (PVD) and Ion Beam Sputter Deposition (IBSD). The thickness of the SiO2 thin layer was kept constant at 150nm for each deposition process. The surface roughness was measured by Stylus Profilometry and Atomic Force Microscopy (AFM). It was found that the layer which was deposited by IBSD has got the minimum surface roughness value and the layer which was deposited by PECVD process has the highest surface roughness value. During the same investigation, the substrate temperature of PECVD was varied from 80° C to 300° C with the step size of 40° C and it was found that the surface roughness keeps on increasing as the substrate holder temperature increases in the PECVD process. A new insulation layer system was proposed to minimize the dielectric breakdown effect in insulation layer for micromirror arrays. The conventional bilayer system was replaced by five layer system but the total thickness of insulation layer remains the same. It was found that during the actuation of micromirror arrays structure, the dielectric breakdown effect was reduced considerably as compared to the bilayer system. In the second step the fabrication process of the micromirror arrays was successfully adapted and transferred from glass substrates to the flexible PEN substrates by optimizing the conventional process recipe. In the last section, a large module of micromirror arrays was fabricated by electrically interconnecting four 10cm×10cm micromirror modules on a glass pane having dimensions of 21cm×21cm.
Resumo:
The study aims to get deeper insight into the highly extensive system of animal husbandry in the Mahafaly region of southwestern Madagascar. It tries to understand the major drivers for pastoral dynamics, land and resource use along a gradient in altitude and vegetation to consider the area’s high spatial and temporal heterogeneity. The study also analyzes the reproductive performance of local livestock as well as the owners’ culling strategies to determine herd dynamics, opportunities for economic growth, and future potential for rural development. Across seasons, plateau herds from both livestock species covered longer distances (cattle 13.6±3.02 km, goats 12.3±3.48 km) and were found further away from the settlements (cattle 3.1±0.96 km, goats 2.8±0.98 km) than those from the coastal plain (walking_dist: cattle 9.5±3.25 km, goats 9.2±2.57 km; max_dist: cattle 2.6±1.28 km, goats 1.8±0.61 km). Transhumant cattle were detected more vulnerable through limited access to pasture land and water resources compared to local herds. Seasonal water shortage has been confirmed as a key constraint on the plateau while livestock keeping along the coast is more limited by dry season forage availability. However, recent security issues and land use conflicts with local crop farmers are gaining importance and force livestock owners to adapt their traditional grazing management, resulting in spatio-temporal variation of livestock numbers and in the impending risk of local overgrazing and degradation of rangelands. Among the 133 plant species consumed by livestock, 13 were determined of major importance for the animals’ nutrition. The nutritive value and digestibility of the natural forage, as well as its abundance in the coastal zone, substantially decreased over the course of the dry season and emphasized the importance of supplementary forage plants, in particular Euphorbia stenoclada. At the same time, an unsustainable utilization and overexploitation of its wild stocks may raise the pressure on the vegetation and pasture resources within the nearby Tsimanampetsotsa National Park. Age at first parturition was 40.5±0.59 months for cattle and 21.3±0.63 months for goats. Both species showed long parturition intervals (cattle 24.2±0.48 months, goats 12.4±0.30 months), mostly due to the maintenance of poorly performing breeding females within the herds. Reported offspring mortality, however, was low with 2.5% of cattle and 18.8% of goats dying before reaching maturity. The analysis of economic information revealed higher than expected market dynamics, especially for zebus, resulting in annual contribution margins of 33 € per cattle unit and 11 € per goat unit. The application of the PRY Herd Life model to simulate herd development for present management and two alternate scenarios confirmed the economic profitability of the current livestock system and showed potential for further productive and economic development. However, this might be clearly limited by the region’s restricted carrying capacity. Summarizing, this study illustrates the highly extensive and resources-driven character of the livestock system in the Mahafaly region, with herd mobility being a central element to cope with seasonal shortages in forage and water. But additional key drivers and external factors are gaining importance and increasingly affect migration decisions and grazing management. This leads to an increased risk of local overgrazing and overexploitation of natural pasture resources and intensifies the tension between pastoral and conservation interests. At the same time, it hampers the region’s agronomic development, which has not yet been fully exploited. The situation therefore demonstrates the need for practical improvement suggestions and implication measures, such as the systematic forestation of supplemental forage plant species in the coastal zone or a stronger integration of animal husbandry and crop production, to sustain the traditional livestock system without compromising peoples’ livelihoods while at the same time minimizing the pastoral impact on the area’s unique nature and environment.