2 resultados para Tate, Kellyn

em Universitätsbibliothek Kassel, Universität Kassel, Germany


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sei $N/K$ eine galoissche Zahlkörpererweiterung mit Galoisgruppe $G$, so dass es in $N$ eine Stelle mit voller Zerlegungsgruppe gibt. Die vorliegende Arbeit beschäftigt sich mit Algorithmen, die für das gegebene Fallbeispiel $N/K$, die äquivariante Tamagawazahlvermutung von Burns und Flach für das Paar $(h^0(Spec(N), \mathbb{Z}[G]))$ (numerisch) verifizieren. Grob gesprochen stellt die äquivariante Tamagawazahlvermutung (im Folgenden ETNC) in diesem Spezialfall einen Zusammenhang her zwischen Werten von Artinschen $L$-Reihen zu den absolut irreduziblen Charakteren von $G$ und einer Eulercharakteristik, die man in diesem Fall mit Hilfe einer sogenannten Tatesequenz konstruieren kann. Unter den Voraussetzungen 1. es gibt eine Stelle $v$ von $N$ mit voller Zerlegungsgruppe, 2. jeder irreduzible Charakter $\chi$ von $G$ erfüllt eine der folgenden Bedingungen 2a) $\chi$ ist abelsch, 2b) $\chi(G) \subset \mathbb{Q}$ und $\chi$ ist eine ganzzahlige Linearkombination von induzierten trivialen Charakteren; wird ein Algorithmus entwickelt, der ETNC für jedes Fallbeispiel $N/\mathbb{Q}$ vollständig beweist. Voraussetzung 1. erlaubt es eine Idee von Chinburg ([Chi89]) umzusetzen zur algorithmischen Berechnung von Tatesequenzen. Dabei war es u.a. auch notwendig lokale Fundamentalklassen zu berechnen. Im höchsten zahm verzweigten Fall haben wir hierfür einen Algorithmus entwickelt, der ebenfalls auf den Ideen von Chinburg ([Chi85]) beruht, die auf Arbeiten von Serre [Ser] zurück gehen. Für nicht zahm verzweigte Erweiterungen benutzen wir den von Debeerst ([Deb11]) entwickelten Algorithmus, der ebenfalls auf Serre's Arbeiten beruht. Voraussetzung 2. wird benötigt, um Quotienten aus den $L$-Werten und Regulatoren exakt zu berechnen. Dies gelingt, da wir im Fall von abelschen Charakteren auf die Theorie der zyklotomischen Einheiten zurückgreifen können und im Fall (b) auf die analytische Klassenzahlformel von Zwischenkörpern. Ohne die Voraussetzung 2. liefern die Algorithmen für jedes Fallbeispiel $N/K$ immer noch eine numerische Verifikation bis auf Rechengenauigkeit. Den Algorithmus zur numerischen Verifikation haben wir für $A_4$-Erweiterungen über $\mathbb{Q}$ in das Computeralgebrasystem MAGMA implementiert und für 27 Erweiterungen die äquivariante Tamagawazahlvermutung numerisch verifiziert.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In dieser Arbeit werden Algorithmen zur Untersuchung der äquivarianten Tamagawazahlvermutung von Burns und Flach entwickelt. Zunächst werden Algorithmen angegeben mit denen die lokale Fundamentalklasse, die globale Fundamentalklasse und Tates kanonische Klasse berechnet werden können. Dies ermöglicht unter anderem Berechnungen in Brauergruppen von Zahlkörpererweiterungen. Anschließend werden diese Algorithmen auf die Tamagawazahlvermutung angewendet. Die Epsilonkonstantenvermutung kann dadurch für alle Galoiserweiterungen L|K bewiesen werden, bei denen L in einer Galoiserweiterung E|Q vom Grad kleiner gleich 15 eingebettet werden kann. Für die Tamagawazahlvermutung an der Stelle 1 wird ein Algorithmus angegeben, der die Vermutung für ein gegebenes Fallbeispiel L|Q numerischen verifizieren kann. Im Spezialfall, dass alle Charaktere rational oder abelsch sind, kann dieser Algorithmus die Vermutung für L|Q sogar beweisen.