4 resultados para Taiwanese tourists
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
Fotografie ist zu einem festen Bestandteil technisierter Kulturen geworden, zu so einem selbstverständlichen Segment unserer Gesellschaft, dass wir sie als solche oft gar nicht mehr wahrnehmen. Dabei haben die Bilder den Blick auf die Welt radikal verändert und neue Wirklichkeiten geschaffen. Die Durchdringung unserer Welt mit dieser visuellen Macht, erfordert die grundsätzliche Feststellung, dass fotografische Bilder nicht einfache Abbilder der Realität sind, sie dürfen nicht mit dieser verwechselt werden. Deshalb wird zunächst das Wesen der Fotografie thematisiert, um anschließend die Bildproduktion als zentrales Medium touristischer Aneignung zu illustrieren. Kernstück der Ausführungen bilden Reflexionen zu Motivationen und Funktionen des Fotografierens im Urlaub. An dieser Stelle findet dann eine Verknüpfung von Rassismus und Reisefotografie statt, wobei sich die geäußerten Denkmuster und beschriebenen Verhaltensweisen auf Touristen, die aus den westlichen Instudrienationen stammen und in die Länder des Südens reisen, beziehen. Die Ergebnisse werden mit empirisch gewonnenen Ausssagen von Urlaubern und mit Fotografien selbst belegt.
Resumo:
Geographically, Taiwan is an Island and situated in the northeast of Asia, on the western side of the Pacific Basin, at the southeast of main China, south of Japan, and north of the Philippines. The main topographic character is the longitudinally oriented mountainous area. More than 200 peaks rise above 3000 m. They departed Taiwan into two lowland areas, an eastern and western plain. Taiwan is departed into subtropical (north area) and tropical zone (south area), which have a warm and humid climate, due to the Tropic of Cancer passing through. The average annual temperature in the lowland amounts to 28°C (7~38°C). The temperate climate also presents in the mountainous areas. The tropical typhoons usually come in summer and bring heavy rain, while the monsoon seasons have an important effect on the regional rainfall distribution. The mean annual rainfall of Taiwan is about 2600 mm (1000~6700 mm); the mountainous areas receive more rain than the lowlands. In Taiwan, according to different temperature and vegetation, the ecological environments were given rise to vertical biotic zonations, and form five major types: highland snowfield, highland meadow, coniferous forest, deciduous forest, and tropical forest. Six National Parks in Taiwan are located in the mountainous areas, in the north, the south, and on Jinmen Island. The National Parks represent about 8.4% of the country area. In this study, the collection sites are situated in Yangmingshan, Shei-Pa, Yushan, and Kenting National Park. Due to the island isolation, the proportions of endemic species are great in Taiwan, which also presents a high biodiversity. There are 4255 species of vascular plants including 1133 endemic. 5936 species in 1276 genera of fungi are hitherto reported in Taiwan. Among them, 233 Corticiaceae species were recorded, over one third (79 species) of them are known only from Taiwan. The first fungal report in Taiwan is about Phytophthora cyperi, published by the Japanese researcher T. Kawakami in 1904. Therefore, the history of research about fungi in Taiwan is more than one hundred years old. An eminent Japanese mycologist K. Sawada made an intensive survey from 1919 to 1959, and reported 2464 fungi species in his eleven volumes of “Descriptive Catalogue of Formosan Fungi”. However, only a few species (21 species in 9 genera) of Corticiaceae were recorded. From 1973, Chen and Lin resumed the study on Corticiaceae, and also some other foreign mycologists contributed for this field after 1980. The German research group lead by Franz Oberwinkler from Tübingen University collected in Taiwan several times. They published a number of new species and new records. Since 1989, S. H. Wu, a Taiwanese mycologist, has published a great amount of reports on corticioid fungi from Taiwan. Corticioid fungi were made up by the large and heterogeneous unnatural family Corticiaceae and other resupinate fungi belonging to other natural families in the Agaricomycetes. Molecular studies have shown that corticioid genera are distributed across all major clades of Agaricomycetes indicating that the corticioid fungi represent a polyphyletic group. They have resupinate fruitbodies and similar habitats. Species are characterized by simple fruitbody, more or less effused, and present smooth, porioid, grandinioid to odontioid hymenial surface. The fruitbodies are differently colored and usually soft to tough. Most of the Corticiaceae species are wood-saprobic organisms and gain the energy from the decomposing of wood-substrate such as cellulose or lignin. Materials for this study were collected by the author and other mycologists in Taiwan during surveys in April and May 1996, and March 2007, using the spring season with its high humidity and warm climate which are optimal conditions for the development of fungi. For assembling, the convenience sampling method was used in this study. This approach was chosen because it enables to detect a high biodiversity in a short time, and also to find species with rare or patchy distribution. The collecting sites from the North to the South include four National Parks and some preserved forests. They cover many different habitats such as low lands and high mountains. Fresh specimens were dried and analysed with a light microscope. 265 specimens belonging to Corticiaceae were studied in this research. Among them, 50 species in 21 genera including 11 new records and 10 new species were described with text and drawing. Four new species are belonging to Hyphodontia (H. sp. nov. 1, H. sp. nov. 2, H. sp. nov. 3, and H. sp. nov. 4), four to Schizopora (Sch. sp. nov. 1, Sch. sp. nov. 2, Sch. sp. nov. 3, and Sch. sp. nov. 4), one in Trechispora (T. sp. nov. 1), and one in Tubulicrinis (T. sp. nov. 1). Species recorded as new are Aleurodiscus amorphus, Botryohypochnus isabellinus, Hyphodontia cineracea, Hyphodontia palmae, Hypochnicium vellereum, Merulius tremellosus, Metulodontia nivea, Paullicorticium ansatum, Phlebia radiata, Phlebiella ardosiaca, and Xylobolus frustulatus. Besides, Botryohypochnus, Merulius, Metulodontia, Paullicorticium, and Xylobolus are also newly recorded genera in Taiwan. The genus Hyphodontia presents the highest diversity with 20 out of 50 species recorded. The second important genus is Hyphoderma, however with only 5 species. This indicates that Hyphodontia and Hyphoderma have a higher ability to develop in variable environments and approximately shows the predominance of these two genera in Taiwanese Corticiaceae. There are 11 new records out of the 50 species recorded, representing 22%. Some species, e.g. Hypochnicium vellereum and Paullicorticium ansatum were in the past recorded only in Europe and North America with cold and temperate climate. The samples of them are for the first time found in the subtropical belt, and display some difference from those of temperate regions. These collections should be molecularly investigated to clarify if they represent the same species of temperate areas. Patchily distributed species, for example Phlebiella ardosiaca, previously known only in Europe, and Hyphodontia palmae collected only in Brazil, were first recorded in different continents. Two possibilities are indicated by these new records: they are worldwide species but very rare to be found, or the Taiwanese specimens are taxonomically different. More survey from other continents and molecular study for these collections should be done in the future to solve this question. The distribution of Corticiaceae in Taiwan presents the variations in the north, central, and south areas and shows the diversity in lowlands and high mountains. The results of this study provide the evidence that the temperate Corticiaceae species displays a wider distribution. Subtropical and tropical taxa probably have also high dispersal capacities, and could possibly be found in the future in neighboring areas such as China, Japan, Korea or South Asia, but this needs further researches. In the total of 50 species, 10 new taxa were described in this study, giving about 20%. Some new species (e.g. Hyphodontia sp. 1, Hyphodontia sp. 2, and Hyphodontia sp. 3) are very similar to known species (Hyphodontia sambuci and Hyphodontia formosana), and the distinctive characters of Schizopora sp. nov. 1 are intermediate between those of Schizopora paradoxa and Hyphodontia flavipora. Thus, these small differences between the new and known species, suggest that the speciation occurred when the fungi migrated into Taiwan, due to the high diversity of environment, and amounts of the endemic plants. Taiwan is an intermediate place for the south (tropical) fungal species to migrate and adapt to north (temperate) regions. The middle and high altitude environments in Taiwan offer good conditions for the fungal speciation and possibly the occurrence of physiological changes to adapt to the temperate climate. Thus Taiwan has an important position for the biogeography of Asia mycobiota. 5936 known species in Taiwan represent about only 20% of the estimated number (24000) of Taiwanese fungal taxa. In this study, the findings (22% new records and 20% new species) indicate that amounts of unknown fungi species are expected in Taiwan. The lack of knowledge indicates that many new species are awaiting description, and fungal survey in Taiwan remains in a Pioneer phase. The last three wide surveys of Corticiaceae researches took place 20 years before this study (Chen & Lin 1977, Lin & Chen 1989, Wu 1990). After previous important contributions, the present taxonomic study comprising 21 genera is the most extensive on Corticiaceae of Taiwan.
Resumo:
The rivers are considered as the life line of any country since they make water available for our domestic, industrial and recreational functions. The quality of river water signifies the health status and hygienic aspects of a particular region, but the quality of these life lines is continuously deteriorating due to discharge of sewage, garbage and industrial effluents into them. Thrust on water demand has increased manifolds due to the increased population, therefore tangible efforts to make the water sources free from pollution is catching attention all across the globe. This paper attempts to highlight the trends in water quality change of River Beas, right from Manali to Larji in India. This is an important river in the state of Himachal Pradesh and caters to the need of water for Manali and Kullu townships, besides other surrounding rural areas. The Manali-Larji Beas river stretch is exposed to the flow of sewage, garbage and muck resulting from various project activities, thereby making it vulnerable to pollution. In addition, the influx of thousands of tourists to these towns also contributes to the pollution load by their recreational and other tourist related activities. Pollution of this river has ultimately affected the livelihood of local population in this region. Hence, water quality monitoring was carried out for the said stretch between January, 2010 and January, 2012 at 15 various locations on quarterly basis, right from the upstream of Manali town and up to downstream of Larji dam. Temperature, color, odor, D.O. , pH, BOD, TSS, TC and FC has been the parameters that were studied. This study gives the broad idea about the characteristics of water at locations in the said river stretch, and suggestions for improving water quality and livelihood of local population in this particular domain.
Resumo:
At many locations in Myanmar, ongoing changes in land use have negative environmental impacts and threaten natural ecosystems at local, regional and national scales. In particular, the watershed area of Inle Lake in eastern Myanmar is strongly affected by the environmental effects of deforestation and soil erosion caused by agricultural intensification and expansion of agricultural land, which are exacerbated by the increasing population pressure and the growing number of tourists. This thesis, therefore, focuses on land use changes in traditional farming systems and their effects on socio-economic and biophysical factors to improve our understanding of sustainable natural resource management of this wetland ecosystem. The main objectives of this research were to: (1) assess the noticeable land transformations in space and time, (2) identify the typical farming systems as well as the divergent livelihood strategies, and finally, (3) estimate soil erosion risk in the different agro-ecological zones surrounding the Inle Lake watershed area. GIS and remote sensing techniques allowed to identify the dynamic land use and land cover changes (LUCC) during the past 40 years based on historical Corona images (1968) and Landsat images (1989, 2000 and 2009). In this study, 12 land cover classes were identified and a supervised classification was used for the Landsat datasets, whereas a visual interpretation approach was conducted for the Corona images. Within the past 40 years, the main landscape transformation processes were deforestation (- 49%), urbanization (+ 203%), agricultural expansion (+ 34%) with a notably increase of floating gardens (+ 390%), land abandonment (+ 167%), and marshlands losses in wetland area (- 83%) and water bodies (- 16%). The main driving forces of LUCC appeared to be high population growth, urbanization and settlements, a lack of sustainable land use and environmental management policies, wide-spread rural poverty, an open market economy and changes in market prices and access. To identify the diverse livelihood strategies in the Inle Lake watershed area and the diversity of income generating activities, household surveys were conducted (total: 301 households) using a stratified random sampling design in three different agro-ecological zones: floating gardens (FG), lowland cultivation (LL) and upland cultivation (UP). A cluster and discriminant analysis revealed that livelihood strategies and socio-economic situations of local communities differed significantly in the different zones. For all three zones, different livelihood strategies were identified which differed mainly in the amount of on-farm and off-farm income, and the level of income diversification. The gross margin for each household from agricultural production in the floating garden, lowland and upland cultivation was US$ 2108, 892 and 619 ha-1 respectively. Among the typical farming systems in these zones, tomato (Lycopersicon esculentum L.) plantation in the floating gardens yielded the highest net benefits, but caused negative environmental impacts given the overuse of inorganic fertilizers and pesticides. The Revised Universal Soil Loss Equation (RUSLE) and spatial analysis within GIS were applied to estimate soil erosion risk in the different agricultural zones and for the main cropping systems of the study region. The results revealed that the average soil losses in year 1989, 2000 and 2009 amounted to 20, 10 and 26 t ha-1, respectively and barren land along the steep slopes had the highest soil erosion risk with 85% of the total soil losses in the study area. Yearly fluctuations were mainly caused by changes in the amount of annual precipitation and the dynamics of LUCC such as deforestation and agriculture extension with inappropriate land use and unsustainable cropping systems. Among the typical cropping systems, upland rainfed rice (Oryza sativa L.) cultivation had the highest rate of soil erosion (20 t ha-1yr-1) followed by sebesten (Cordia dichotoma) and turmeric (Curcuma longa) plantation in the UP zone. This study indicated that the hotspot region of soil erosion risk were upland mountain areas, especially in the western part of the Inle lake. Soil conservation practices are thus urgently needed to control soil erosion and lake sedimentation and to conserve the wetland ecosystem. Most farmers have not yet implemented soil conservation measures to reduce soil erosion impacts such as land degradation, sedimentation and water pollution in Inle Lake, which is partly due to the low economic development and poverty in the region. Key challenges of agriculture in the hilly landscapes can be summarized as follows: fostering the sustainable land use of farming systems for the maintenance of ecosystem services and functions while improving the social and economic well-being of the population, integrated natural resources management policies and increasing the diversification of income opportunities to reduce pressure on forest and natural resources.