4 resultados para Support tool
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
Accurate data of the natural conditions and agricultural systems with a good spatial resolution are a key factor to tackle food insecurity in developing countries. A broad variety of approaches exists to achieve precise data and information about agriculture. One system, especially developed for smallholder agriculture in East Africa, is the Farm Management Handbook of Kenya. It was first published in 1982/83 and fully revised in 2012, now containing 7 volumes. The handbooks contain detailed information on climate, soils, suitable crops and soil care based on scientific research results of the last 30 years. The density of facts leads to time consuming extraction of all necessary information. In this study we analyse the user needs and necessary components of a system for decision support for smallholder farming in Kenya based on a geographical information system (GIS). Required data sources were identified, as well as essential functions of the system. We analysed the results of our survey conducted in 2012 and early 2013 among agricultural officers. The monitoring of user needs and the problem of non-adaptability of an agricultural information system on the level of extension officers in Kenya are the central objectives. The outcomes of the survey suggest the establishment of a decision support tool based on already available open source GIS components. The system should include functionalities to show general information for a specific location and should provide precise recommendations about suitable crops and management options to support agricultural guidance on farm level.
Resumo:
Mit der Verwirklichung ,Ökologischer Netzwerke‘ werden Hoffnungen zum Stopp des Verlustes der biologischen Vielfalt verknüpft. Sowohl auf gesamteuropäischer Ebene (Pan-European Ecological Network - PEEN) als auch in den einzelnen Staaten entstehen Pläne zum Aufbau von Verbundsystemen. Im föderalen Deutschland werden kleinmaßstäbliche Biotopverbundplanungen auf Landesebene aufgestellt; zum nationalen Biotopverbund bestehen erste Konzepte. Die vorliegende Arbeit ist auf diese überörtlichen, strategisch vorbereitenden Planungsebenen ausgerichtet. Ziele des Verbunds sind der Erhalt von Populationen insbesondere der gefährdeten Arten sowie die Ermöglichung von Ausbreitung und Wanderung. Aufgrund fehlender Datengrundlagen zu den Arten und Populationen ist es nicht ohne weiteres möglich, die Konzepte und Modelle der Populationsökologie in die überörtlichen Planungsebenen zu übertragen. Gemäß der o.g. Zielstellungen sollte sich aber die Planung von Verbundsystemen an den Ansprüchen der auf Verbund angewiesenen Arten orientieren. Ziel der Arbeit war die Entwicklung einer praktikablen GIS-gestützten Planungshilfe zur größtmöglichen Integration ökologischen Wissens unter der Bedingung eingeschränkter Informationsverfügbarkeit. Als Grundlagen dazu werden in Übersichtsform zunächst die globalen, europäisch-internationalen und nationalen Rahmenbedingungen und Anforderungen bezüglich des Aufbaus von Verbundsystemen zusammengestellt. Hier sind die Strategien zum PEEN hervorzuheben, die eine Integration ökologischer Inhalte insbesondere durch die Berücksichtigung räumlich-funktionaler Beziehungen fordern. Eine umfassende Analyse der landesweiten Biotopverbundplanungen der BRD zeigte die teilweise erheblichen Unterschiede zwischen den Länderplanungen auf, die es aktuell nicht ermöglichen, ein schlüssiges nationales Konzept zusammenzufügen. Nicht alle Länder haben landesweite Biotopverbundplanungen und Landeskonzepte, bei denen dem geplanten Verbund die Ansprüche von Arten zugrunde gelegt werden, gibt es nur ansatzweise. Weiterhin wurde eine zielgerichtete Eignungsprüfung bestehender GIS-basierter Modelle und Konzepte zum Verbund unter Berücksichtigung der regelmäßig in Deutschland verfügbaren Datengrundlagen durchgeführt. Da keine integrativen regelorientierten Ansätze vorhanden waren, wurde der vektorbasierte Algorithmus HABITAT-NET entwickelt. Er arbeitet mit ,Anspruchstypen‘ hinsichtlich des Habitatverbunds, die stellvertretend für unterschiedliche ökologische Gruppen von (Ziel-) Arten mit terrestrischer Ausbreitung stehen. Kombiniert wird die Fähigkeit zur Ausbreitung mit einer Grobtypisierung der Biotopbindung. Die wichtigsten Grundlagendaten bilden die jeweiligen (potenziellen) Habitate von Arten eines Anspruchstyps sowie die umgebende Landnutzung. Bei der Bildung von ,Lebensraumnetzwerken‘ (Teil I) werden gestufte ,Funktions- und Verbindungsräume‘ generiert, die zu einem räumlichen System verknüpft sind. Anschließend kann die aktuelle Zerschneidung der Netzwerke durch Verkehrstrassen aufgezeigt werden, um darauf aufbauend prioritäre Abschnitte zur Wiedervernetzung zu ermitteln (Teil II). Begleitend wird das Konzept der unzerschnittenen Funktionsräume (UFR) entworfen, mit dem die Indikation von Habitatzerschneidung auf Landschaftsebene möglich ist. Diskutiert werden schließlich die Eignung der Ergebnisse als kleinmaßstäblicher Zielrahmen, Tests zur Validierung, Vergleiche mit Verbundplanungen und verschiedene Setzungen im GIS-Algorithmus. Erläuterungen zu den Einsatzmöglichkeiten erfolgen beispielsweise für die Bereiche Biotopverbund- und Landschaftsplanung, Raumordnung, Strategische Umweltprüfung, Verkehrswegeplanung, Unterstützung des Konzeptes der Lebensraumkorridore, Kohärenz im Schutzgebietssystem NATURA 2000 und Aufbau von Umweltinformationssystemen. Schließlich wird ein Rück- und Ausblick mit der Formulierung des weiteren Forschungsbedarfs verknüpft.
Resumo:
Concept exploration is a knowledge acquisition tool for interactively exploring the hierarchical structure of finitely generated lattices. Applications comprise the support of knowledge engineers by constructing a type lattice for conceptual graphs, and the exploration of large formal contexts in formal concept analysis.
Resumo:
Summary: Productivity and forage quality of legume-grass swards are important factors for successful arable farming in both organic and conventional farming systems. For these objectives the botanical composition of the swards is of particular importance, especially, the content of legumes due to their ability to fix airborne nitrogen. As it can vary considerably within a field, a non-destructive detection method while doing other tasks would facilitate a more targeted sward management and could predict the nitrogen supply of the soil for the subsequent crop. This study was undertaken to explore the potential of digital image analysis (DIA) for a non destructive prediction of legume dry matter (DM) contribution of legume-grass mixtures. For this purpose an experiment was conducted in a greenhouse, comprising a sample size of 64 experimental swards such as pure swards of red clover (Trifolium pratense L.), white clover (Trifolium repens L.) and lucerne (Medicago sativa L.) as well as binary mixtures of each legume with perennial ryegrass (Lolium perenne L.). Growth stages ranged from tillering to heading and the proportion of legumes from 0 to 80 %. Based on digital sward images three steps were considered in order to estimate the legume contribution (% of DM): i) The development of a digital image analysis (DIA) procedure in order to estimate legume coverage (% of area). ii) The description of the relationship between legume coverage (% area) and legume contribution (% of DM) derived from digital analysis of legume coverage related to the green area in a digital image. iii) The estimation of the legume DM contribution with the findings of i) and ii). i) In order to evaluate the most suitable approach for the estimation of legume coverage by means of DIA different tools were tested. Morphological operators such as erode and dilate support the differentiation of objects of different shape by shrinking and dilating objects (Soille, 1999). When applied to digital images of legume-grass mixtures thin grass leaves were removed whereas rounder clover leaves were left. After this process legume leaves were identified by threshold segmentation. The segmentation of greyscale images turned out to be not applicable since the segmentation between legumes and bare soil failed. The advanced procedure comprising morphological operators and HSL colour information could determine bare soil areas in young and open swards very accurately. Also legume specific HSL thresholds allowed for precise estimations of legume coverage across a wide range from 11.8 - 72.4 %. Based on this legume specific DIA procedure estimated legume coverage showed good correlations with the measured values across the whole range of sward ages (R2 0.96, SE 4.7 %). A wide range of form parameters (i.e. size, breadth, rectangularity, and circularity of areas) was tested across all sward types, but none did improve prediction accuracy of legume coverage significantly. ii) Using measured reference data of legume coverage and contribution, in a first approach a common relationship based on all three legumes and sward ages of 35, 49 and 63 days was found with R2 0.90. This relationship was improved by a legume-specific approach of only 49- and 63-d old swards (R2 0.94, 0.96 and 0.97 for red clover, white clover, and lucerne, respectively) since differing structural attributes of the legume species influence the relationship between these two parameters. In a second approach biomass was included in the model in order to allow for different structures of swards of different ages. Hence, a model was developed, providing a close look on the relationship between legume coverage in binary legume-ryegrass communities and the legume contribution: At the same level of legume coverage, legume contribution decreased with increased total biomass. This phenomenon may be caused by more non-leguminous biomass covered by legume leaves at high levels of total biomass. Additionally, values of legume contribution and coverage were transformed to the logit-scale in order to avoid problems with heteroscedasticity and negative predictions. The resulting relationships between the measured legume contribution and the calculated legume contribution indicated a high model accuracy for all legume species (R2 0.93, 0.97, 0.98 with SE 4.81, 3.22, 3.07 % of DM for red clover, white clover, and lucerne swards, respectively). The validation of the model by using digital images collected over field grown swards with biomass ranges considering the scope of the model shows, that the model is able to predict legume contribution for most common legume-grass swards (Frame, 1992; Ledgard and Steele, 1992; Loges, 1998). iii) An advanced procedure for the determination of legume DM contribution by DIA is suggested, which comprises the inclusion of morphological operators and HSL colour information in the analysis of images and which applies an advanced function to predict legume DM contribution from legume coverage by considering total sward biomass. Low residuals between measured and calculated values of legume dry matter contribution were found for the separate legume species (R2 0.90, 0.94, 0.93 with SE 5.89, 4.31, 5.52 % of DM for red clover, white clover, and lucerne swards, respectively). The introduced DIA procedure provides a rapid and precise estimation of legume DM contribution for different legume species across a wide range of sward ages. Further research is needed in order to adapt the procedure to field scale, dealing with differing light effects and potentially higher swards. The integration of total biomass into the model for determining legume contribution does not necessarily reduce its applicability in practice as a combined estimation of total biomass and legume coverage by field spectroscopy (Biewer et al. 2009) and DIA, respectively, may allow for an accurate prediction of the legume contribution in legume-grass mixtures.