7 resultados para Superconducting tape
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
The restarting automaton is a restricted model of computation that was introduced by Jancar et al. to model the so-called analysis by reduction, which is a technique used in linguistics to analyze sentences of natural languages. The most general models of restarting automata make use of auxiliary symbols in their rewrite operations, although this ability does not directly correspond to any aspect of the analysis by reduction. Here we put restrictions on the way in which restarting automata use auxiliary symbols, and we investigate the influence of these restrictions on their expressive power. In fact, we consider two types of restrictions. First, we consider the number of auxiliary symbols in the tape alphabet of a restarting automaton as a measure of its descriptional complexity. Secondly, we consider the number of occurrences of auxiliary symbols on the tape as a dynamic complexity measure. We establish some lower and upper bounds with respect to these complexity measures concerning the ability of restarting automata to recognize the (deterministic) context-free languages and some of their subclasses.
Resumo:
Restarting automata are a restricted model of computation that was introduced by Jancar et.al. to model the so-called analysis by reduction. A computation of a restarting automaton consists of a sequence of cycles such that in each cycle the automaton performs exactly one rewrite step, which replaces a small part of the tape content by another, even shorter word. Thus, each language accepted by a restarting automaton belongs to the complexity class $CSL cap NP$. Here we consider a natural generalization of this model, called shrinking restarting automaton, where we do no longer insist on the requirement that each rewrite step decreases the length of the tape content. Instead we require that there exists a weight function such that each rewrite step decreases the weight of the tape content with respect to that function. The language accepted by such an automaton still belongs to the complexity class $CSL cap NP$. While it is still unknown whether the two most general types of one-way restarting automata, the RWW-automaton and the RRWW-automaton, differ in their expressive power, we will see that the classes of languages accepted by the shrinking RWW-automaton and the shrinking RRWW-automaton coincide. As a consequence of our proof, it turns out that there exists a reduction by morphisms from the language class $cL(RRWW)$ to the class $cL(RWW)$. Further, we will see that the shrinking restarting automaton is a rather robust model of computation. Finally, we will relate shrinking RRWW-automata to finite-change automata. This will lead to some new insights into the relationships between the classes of languages characterized by (shrinking) restarting automata and some well-known time and space complexity classes.
Resumo:
Die vorliegende Arbeit behandelt Restartautomaten und Erweiterungen von Restartautomaten. Restartautomaten sind ein Werkzeug zum Erkennen formaler Sprachen. Sie sind motiviert durch die linguistische Methode der Analyse durch Reduktion und wurden 1995 von Jancar, Mráz, Plátek und Vogel eingeführt. Restartautomaten bestehen aus einer endlichen Kontrolle, einem Lese/Schreibfenster fester Größe und einem flexiblen Band. Anfänglich enthält dieses sowohl die Eingabe als auch Bandbegrenzungssymbole. Die Berechnung eines Restartautomaten läuft in so genannten Zyklen ab. Diese beginnen am linken Rand im Startzustand, in ihnen wird eine lokale Ersetzung auf dem Band durchgeführt und sie enden mit einem Neustart, bei dem das Lese/Schreibfenster wieder an den linken Rand bewegt wird und der Startzustand wieder eingenommen wird. Die vorliegende Arbeit beschäftigt sich hauptsächlich mit zwei Erweiterungen der Restartautomaten: CD-Systeme von Restartautomaten und nichtvergessende Restartautomaten. Nichtvergessende Restartautomaten können einen Zyklus in einem beliebigen Zustand beenden und CD-Systeme von Restartautomaten bestehen aus einer Menge von Restartautomaten, die zusammen die Eingabe verarbeiten. Dabei wird ihre Zusammenarbeit durch einen Operationsmodus, ähnlich wie bei CD-Grammatik Systemen, geregelt. Für beide Erweiterungen zeigt sich, dass die deterministischen Modelle mächtiger sind als deterministische Standardrestartautomaten. Es wird gezeigt, dass CD-Systeme von Restartautomaten in vielen Fällen durch nichtvergessende Restartautomaten simuliert werden können und andererseits lassen sich auch nichtvergessende Restartautomaten durch CD-Systeme von Restartautomaten simulieren. Des Weiteren werden Restartautomaten und nichtvergessende Restartautomaten untersucht, die nichtdeterministisch sind, aber keine Fehler machen. Es zeigt sich, dass diese Automaten durch deterministische (nichtvergessende) Restartautomaten simuliert werden können, wenn sie direkt nach der Ersetzung einen neuen Zyklus beginnen, oder ihr Fenster nach links und rechts bewegen können. Außerdem gilt, dass alle (nichtvergessenden) Restartautomaten, die zwar Fehler machen dürfen, diese aber nach endlich vielen Zyklen erkennen, durch (nichtvergessende) Restartautomaten simuliert werden können, die keine Fehler machen. Ein weiteres wichtiges Resultat besagt, dass die deterministischen monotonen nichtvergessenden Restartautomaten mit Hilfssymbolen, die direkt nach dem Ersetzungsschritt den Zyklus beenden, genau die deterministischen kontextfreien Sprachen erkennen, wohingegen die deterministischen monotonen nichtvergessenden Restartautomaten mit Hilfssymbolen ohne diese Einschränkung echt mehr, nämlich die links-rechts regulären Sprachen, erkennen. Damit werden zum ersten Mal Restartautomaten mit Hilfssymbolen, die direkt nach dem Ersetzungsschritt ihren Zyklus beenden, von Restartautomaten desselben Typs ohne diese Einschränkung getrennt. Besonders erwähnenswert ist hierbei, dass beide Automatentypen wohlbekannte Sprachklassen beschreiben.
Resumo:
We show that optimizing a quantum gate for an open quantum system requires the time evolution of only three states irrespective of the dimension of Hilbert space. This represents a significant reduction in computational resources compared to the complete basis of Liouville space that is commonly believed necessary for this task. The reduction is based on two observations: the target is not a general dynamical map but a unitary operation; and the time evolution of two properly chosen states is sufficient to distinguish any two unitaries. We illustrate gate optimization employing a reduced set of states for a controlled phasegate with trapped atoms as qubit carriers and a iSWAP gate with superconducting qubits.
Resumo:
We are currently at the cusp of a revolution in quantum technology that relies not just on the passive use of quantum effects, but on their active control. At the forefront of this revolution is the implementation of a quantum computer. Encoding information in quantum states as “qubits” allows to use entanglement and quantum superposition to perform calculations that are infeasible on classical computers. The fundamental challenge in the realization of quantum computers is to avoid decoherence – the loss of quantum properties – due to unwanted interaction with the environment. This thesis addresses the problem of implementing entangling two-qubit quantum gates that are robust with respect to both decoherence and classical noise. It covers three aspects: the use of efficient numerical tools for the simulation and optimal control of open and closed quantum systems, the role of advanced optimization functionals in facilitating robustness, and the application of these techniques to two of the leading implementations of quantum computation, trapped atoms and superconducting circuits. After a review of the theoretical and numerical foundations, the central part of the thesis starts with the idea of using ensemble optimization to achieve robustness with respect to both classical fluctuations in the system parameters, and decoherence. For the example of a controlled phasegate implemented with trapped Rydberg atoms, this approach is demonstrated to yield a gate that is at least one order of magnitude more robust than the best known analytic scheme. Moreover this robustness is maintained even for gate durations significantly shorter than those obtained in the analytic scheme. Superconducting circuits are a particularly promising architecture for the implementation of a quantum computer. Their flexibility is demonstrated by performing optimizations for both diagonal and non-diagonal quantum gates. In order to achieve robustness with respect to decoherence, it is essential to implement quantum gates in the shortest possible amount of time. This may be facilitated by using an optimization functional that targets an arbitrary perfect entangler, based on a geometric theory of two-qubit gates. For the example of superconducting qubits, it is shown that this approach leads to significantly shorter gate durations, higher fidelities, and faster convergence than the optimization towards specific two-qubit gates. Performing optimization in Liouville space in order to properly take into account decoherence poses significant numerical challenges, as the dimension scales quadratically compared to Hilbert space. However, it can be shown that for a unitary target, the optimization only requires propagation of at most three states, instead of a full basis of Liouville space. Both for the example of trapped Rydberg atoms, and for superconducting qubits, the successful optimization of quantum gates is demonstrated, at a significantly reduced numerical cost than was previously thought possible. Together, the results of this thesis point towards a comprehensive framework for the optimization of robust quantum gates, paving the way for the future realization of quantum computers.
Resumo:
Since no physical system can ever be completely isolated from its environment, the study of open quantum systems is pivotal to reliably and accurately control complex quantum systems. In practice, reliability of the control field needs to be confirmed via certification of the target evolution while accuracy requires the derivation of high-fidelity control schemes in the presence of decoherence. In the first part of this thesis an algebraic framework is presented that allows to determine the minimal requirements on the unique characterisation of arbitrary unitary gates in open quantum systems, independent on the particular physical implementation of the employed quantum device. To this end, a set of theorems is devised that can be used to assess whether a given set of input states on a quantum channel is sufficient to judge whether a desired unitary gate is realised. This allows to determine the minimal input for such a task, which proves to be, quite remarkably, independent of system size. These results allow to elucidate the fundamental limits regarding certification and tomography of open quantum systems. The combination of these insights with state-of-the-art Monte Carlo process certification techniques permits a significant improvement of the scaling when certifying arbitrary unitary gates. This improvement is not only restricted to quantum information devices where the basic information carrier is the qubit but it also extends to systems where the fundamental informational entities can be of arbitary dimensionality, the so-called qudits. The second part of this thesis concerns the impact of these findings from the point of view of Optimal Control Theory (OCT). OCT for quantum systems utilises concepts from engineering such as feedback and optimisation to engineer constructive and destructive interferences in order to steer a physical process in a desired direction. It turns out that the aforementioned mathematical findings allow to deduce novel optimisation functionals that significantly reduce not only the required memory for numerical control algorithms but also the total CPU time required to obtain a certain fidelity for the optimised process. The thesis concludes by discussing two problems of fundamental interest in quantum information processing from the point of view of optimal control - the preparation of pure states and the implementation of unitary gates in open quantum systems. For both cases specific physical examples are considered: for the former the vibrational cooling of molecules via optical pumping and for the latter a superconducting phase qudit implementation. In particular, it is illustrated how features of the environment can be exploited to reach the desired targets.
Resumo:
Optimal control theory is a powerful tool for solving control problems in quantum mechanics, ranging from the control of chemical reactions to the implementation of gates in a quantum computer. Gradient-based optimization methods are able to find high fidelity controls, but require considerable numerical effort and often yield highly complex solutions. We propose here to employ a two-stage optimization scheme to significantly speed up convergence and achieve simpler controls. The control is initially parametrized using only a few free parameters, such that optimization in this pruned search space can be performed with a simplex method. The result, considered now simply as an arbitrary function on a time grid, is the starting point for further optimization with a gradient-based method that can quickly converge to high fidelities. We illustrate the success of this hybrid technique by optimizing a geometric phase gate for two superconducting transmon qubits coupled with a shared transmission line resonator, showing that a combination of Nelder-Mead simplex and Krotov’s method yields considerably better results than either one of the two methods alone.