2 resultados para Sugar cane spirit - Brazil
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
Five laboratory incubation experiments were carried out to assess the salinity-induced changes in the microbial use of sugarcane filter cake added to soil. The first laboratory experiment was carried out to prove the hypothesis that the lower content of fungal biomass in a saline soil reduces the decomposition of a complex organic substrate in comparison to a non-saline soil under acidic conditions. Three different rates (0.5, 1.0, and 2.0%) of sugarcane filter cake were added to both soils and incubated for 63 days at 30°C. In the saline control soil without amendment, cumulative CO2 production was 70% greater than in the corresponding non-saline control soil, but the formation of inorganic N did not differ between these two soils. However, nitrification was inhibited in the saline soil. The increase in cumulative CO2 production by adding filter cake was similar in both soils, corresponding to 29% of the filter cake C at all three addition rates. Also the increases in microbial biomass C and biomass N were linearly related to the amount of filter cake added, but this increase was slightly higher for both properties in the saline soil. In contrast to microbial biomass, the absolute increase in ergosterol content in the saline soil was on average only half that in the non-saline soil and it showed also strong temporal changes during the incubation: A strong initial increase after adding the filter cake was followed by a rapid decline. The addition of filter cake led to immobilisation of inorganic N in both soils. This immobilisation was not expected, because the total C-to-total N ratio of the filter cake was below 13 and the organic C-to-organic N ratio in the 0.5 M K2SO4 extract of this material was even lower at 9.2. The immobilisation was considerably higher in the saline soil than in the non-saline soil. The N immobilisation capacity of sugarcane filter cake should be considered when this material is applied to arable sites at high rations. The second incubation experiment was carried out to examine the N immobilizing effect of sugarcane filter cake (C/N ratio of 12.4) and to investigate whether mixing it with compost (C/N ratio of 10.5) has any synergistic effects on C and N mineralization after incorporation into the soil. Approximately 19% of the compost C added and 37% of the filter cake C were evolved as CO2, assuming that the amendments had no effects on the decomposition of soil organic C. However, only 28% of the added filter cake was lost according to the total C and d13C values. Filter cake and compost contained initially significant concentrations of inorganic N, which was nearly completely immobilized between day 7 and 14 of the incubation in most cases. After day 14, N re-mineralization occurred at an average rate of 0.73 µg N g-1 soil d-1 in most amendment treatments, paralleling the N mineralization rate of the non-amended control without significant difference. No significant net N mineralization from the amendment N occurred in any of the amendment treatments in comparison to the control. The addition of compost and filter cake resulted in a linear increase in microbial biomass C with increasing amounts of C added. This increase was not affected by differences in substrate quality, especially the three times larger content of K2SO4 extractable organic C in the sugarcane filter cake. In most amendment treatments, microbial biomass C and biomass N increased until the end of the incubation. No synergistic effects could be observed in the mixture treatments of compost and sugarcane filter cake. The third 42-day incubation experiment was conducted to answer the questions whether the decomposition of sugarcane filter cake also result in immobilization of nitrogen in a saline alkaline soil and whether the mixing of sugarcane filter cake with glucose (adjusted to a C/N ratio of 12.5 with (NH4)2SO4) change its decomposition. The relative percentage CO2 evolved increased from 35% of the added C in the pure 0.5% filter cake treatment to 41% in the 0.5% filter cake +0.25% glucose treatment to 48% in the 0.5% filter cake +0.5% glucose treatment. The three different amendment treatments led to immediate increases in microbial biomass C and biomass N within 6 h that persisted only in the pure filter cake treatment until the end of the incubation. The fungal cell-membrane component ergosterol showed initially an over-proportionate increase in relation to microbial biomass C that fully disappeared at the end of the incubation. The cellulase activity showed a 5-fold increase after filter cake addition, which was not further increased by the additional glucose amendment. The cellulase activity showed an exponential decline to values around 4% of the initial value in all treatments. The amount of inorganic N immobilized from day 0 to day 14 increased with increasing amount of C added in comparison to the control treatment. Since day 14, the immobilized N was re-mineralized at rates between 1.31 and 1.51 µg N g-1 soil d-1 in the amendment treatments and was thus more than doubled in comparison with the control treatment. This means that the re-mineralization rate is independent from the actual size of the microbial residues pool and also independent from the size of the soil microbial biomass. Other unknown soil properties seem to form a soil-specific gate for the release of inorganic N. The fourth incubation experiment was carried out with the objective of assessing the effects of salt additions containing different anions (Cl-, SO42-, HCO3-) on the microbial use of sugarcane filter cake and dhancha leaves amended to inoculated sterile quartz sand. In the subsequent fifth experiment, the objective was to assess the effects of inoculum and temperature on the decomposition of sugar cane filter cake. In the fourth experiment, sugarcane filter cake led to significantly lower respiration rates, lower contents of extractable C and N, and lower contents of microbial biomass C and N than dhancha leaves, but to a higher respiratory quotient RQ and to a higher content of the fungal biomarker ergosterol. The RQ was significantly increased after salt addition, when comparing the average of all salinity treatments with the control. Differences in anion composition had no clear effects on the RQ values. In experiment 2, the rise in temperature from 20 to 40°C increased the CO2 production rate by a factor of 1.6, the O2 consumption rate by a factor of 1.9 and the ergosterol content by 60%. In contrast, the contents of microbial biomass N decreased by 60% and the RQ by 13%. The effects of the inoculation with a saline soil were in most cases negative and did not indicate a better adaptation of these organisms to salinity. The general effects of anion composition on microbial biomass and activity indices were small and inconsistent. Only the fraction of 0.5 M K2SO4 extractable C and N in non-fumigated soil was consistently increased in the 1.2 M NaHCO3 treatment of both experiments. In contrast to the small salinity effects, the quality of the substrate has overwhelming effects on microbial biomass and activity indices, especially on the fungal part of the microbial community.
Resumo:
In the big cities of Pakistan, peri-urban dairy production plays an important role for household income generation and the supply of milk and meat to the urban population. On the other hand, milk production in general, and peri-urban dairy production in particular, faces numerous problems that have been well known for decades. Peri-urban dairy producers have been especially neglected by politicians as well as non-government-organizations (NGOs). Against this background, a study in Pakistan’s third largest city, Faisalabad (Punjab Province), was carried out with the aims of gathering basic information, determining major constraints and identifying options for improvements of the peri-urban milk production systems. For data collection, 145 peri-urban households (HH) engaged in dairy production were interviewed face to face using a structured and pretested questionnaire with an interpreter. For analyses, HH were classified into three wealth groups according to their own perception. Thus, 38 HH were poor, 95 HH well off and 12 HH rich (26.2%, 65.5% and 8.3%, respectively). The richer the respondents perceived their HH, the more frequently they were actually in possession of high value HH assets like phones, bank accounts, motorbikes, tractors and cars. Although there was no difference between the wealth groups with respect to the number of HH members (about 10, range: 1 to 23), the educational level of the HH heads differed significantly: on average, heads of poor HH had followed education for 3 years, compared to 6 years for well off HH and 8 years for rich HH. About 40% of the poor and well off HH also had off-farm incomes, while the percentage was much higher - two thirds (67%) - for the rich HH. The majority of the HH were landless (62%); the rest (55 HH) possessed agricultural land from 0.1 to 10.1 ha (average 2.8 ha), where they were growing green fodder: maize, sorghum and pearl millet in summer; berseem, sugar cane and wheat were grown in winter. Dairy animals accounted for about 60% of the herds; the number of dairy animals per HH ranged from 2 to 50 buffaloes (Nili-Ravi breed) and from 0 to 20 cows (mostly crossbred, also Sahiwal). About 37% (n=54) of the HH did not keep cattle. About three quarters of the dairy animals were lactating. The majority of the people taking care of the animals were family workers; 17.3% were hired labourers (exclusively male), employed by 11 rich and 32 well off HH; none of the poor HH employed workers, but the percentages were 33.7% for the well off and 91.7% for the rich HH. The total number of workers increased significantly with increasing wealth (poor: 2.0; well off:2.5; rich: 3.4). Overall, 69 female labourers were recorded, making up 16.8% of employed workers and one fourth of the HH’s own labourers. Apparently, their only duty was to clean the animals´ living areas; only one of them was also watering and showering the animals. Poor HH relied more on female workers than the other two groups: 27.1% of the workers of poor HH were women, but only 14.8% and 6.8% of the labour force of well off and rich HH were female. Two thirds (70%) of the HH sold milk to dhodis (middlemen) and one third (35%) to neighbours; three HH (2%) did doorstep delivery and one HH (1%) had its own shop. The 91 HH keeping both species usually sold mixed milk (97%). Clients for mixed and pure buffalo milk were dhodis (78%, respectively 59%) and neighbours (28%, respectively 47%). The highest milk prices per liter (Pakistani Rupees, 100 PKR @ 0.8 Euro) were paid by alternative clients (44 PKR; 4 HH), followed by neighbours (40 PKR, 50 HH); dhodis paid lower prices (36 PKR, 99 HH). Prices for pure buffalo and mixed milk did not differ significantly. However, HH obtaining the maximum price from the respective clients for the respective type of milk got between 20% (mixed milk, alternative clients) and 68% (mixed milk, dhodi) more than HH fetching the minimum price. Some HH (19%) reported 7% higher prices for the current summer than the preceding winter. Amount of milk sold and distance from the HH to the city center did not influence milk prices. Respondents usually named problems that directly affected their income and that were directly and constantly visible to them, such as high costs, little space and fodder shortages. Other constraints that are only influencing their income indirectly, e.g. the relatively low genetic potential of their animals due to neglected breeding as well as the short- and long-term health problems correlated with imbalanced feeding and insufficient health care, were rarely named. The same accounts for problems accompanying improper dung management (storage, disposal, burning instead of recycling) for the environment and human health. Most of the named problems are linked to each other and should be addressed within the context of the entire system. Therefore, further research should focus on systematic investigations and improvement options, taking a holistic and interdisciplinary approach instead of only working in single fields. Concerted efforts of dairy farmers, researchers, NGOs and political decision makers are necessary to create an economic, ecological and social framework that allows dairy production to serve the entire society. For this, different improvement options should be tested in terms of their impact on environment and income of the farmers, as well as feasibility and sustainability in the peri-urban zones of Faisalabad.