2 resultados para Strategic management. Performance evaluation. Strategic map. Balanced scorecard. Third sector
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
Die Bedeutung des Dienstgüte-Managements (SLM) im Bereich von Unternehmensanwendungen steigt mit der zunehmenden Kritikalität von IT-gestützten Prozessen für den Erfolg einzelner Unternehmen. Traditionell werden zur Implementierung eines wirksamen SLMs Monitoringprozesse in hierarchischen Managementumgebungen etabliert, die einen Administrator bei der notwendigen Rekonfiguration von Systemen unterstützen. Auf aktuelle, hochdynamische Softwarearchitekturen sind diese hierarchischen Ansätze jedoch nur sehr eingeschränkt anwendbar. Ein Beispiel dafür sind dienstorientierte Architekturen (SOA), bei denen die Geschäftsfunktionalität durch das Zusammenspiel einzelner, voneinander unabhängiger Dienste auf Basis deskriptiver Workflow-Beschreibungen modelliert wird. Dadurch ergibt sich eine hohe Laufzeitdynamik der gesamten Architektur. Für das SLM ist insbesondere die dezentrale Struktur einer SOA mit unterschiedlichen administrativen Zuständigkeiten für einzelne Teilsysteme problematisch, da regelnde Eingriffe zum einen durch die Kapselung der Implementierung einzelner Dienste und zum anderen durch das Fehlen einer zentralen Kontrollinstanz nur sehr eingeschränkt möglich sind. Die vorliegende Arbeit definiert die Architektur eines SLM-Systems für SOA-Umgebungen, in dem autonome Management-Komponenten kooperieren, um übergeordnete Dienstgüteziele zu erfüllen: Mithilfe von Selbst-Management-Technologien wird zunächst eine Automatisierung des Dienstgüte-Managements auf Ebene einzelner Dienste erreicht. Die autonomen Management-Komponenten dieser Dienste können dann mithilfe von Selbstorganisationsmechanismen übergreifende Ziele zur Optimierung von Dienstgüteverhalten und Ressourcennutzung verfolgen. Für das SLM auf Ebene von SOA Workflows müssen temporär dienstübergreifende Kooperationen zur Erfüllung von Dienstgüteanforderungen etabliert werden, die sich damit auch über mehrere administrative Domänen erstrecken können. Eine solche zeitlich begrenzte Kooperation autonomer Teilsysteme kann sinnvoll nur dezentral erfolgen, da die jeweiligen Kooperationspartner im Vorfeld nicht bekannt sind und – je nach Lebensdauer einzelner Workflows – zur Laufzeit beteiligte Komponenten ausgetauscht werden können. In der Arbeit wird ein Verfahren zur Koordination autonomer Management-Komponenten mit dem Ziel der Optimierung von Antwortzeiten auf Workflow-Ebene entwickelt: Management-Komponenten können durch Übertragung von Antwortzeitanteilen untereinander ihre individuellen Ziele straffen oder lockern, ohne dass das Gesamtantwortzeitziel dadurch verändert wird. Die Übertragung von Antwortzeitanteilen wird mithilfe eines Auktionsverfahrens realisiert. Technische Grundlage der Kooperation bildet ein Gruppenkommunikationsmechanismus. Weiterhin werden in Bezug auf die Nutzung geteilter, virtualisierter Ressourcen konkurrierende Dienste entsprechend geschäftlicher Ziele priorisiert. Im Rahmen der praktischen Umsetzung wird die Realisierung zentraler Architekturelemente und der entwickelten Verfahren zur Selbstorganisation beispielhaft für das SLM konkreter Komponenten vorgestellt. Zur Untersuchung der Management-Kooperation in größeren Szenarien wird ein hybrider Simulationsansatz verwendet. Im Rahmen der Evaluation werden Untersuchungen zur Skalierbarkeit des Ansatzes durchgeführt. Schwerpunkt ist hierbei die Betrachtung eines Systems aus kooperierenden Management-Komponenten, insbesondere im Hinblick auf den Kommunikationsaufwand. Die Evaluation zeigt, dass ein dienstübergreifendes, autonomes Performance-Management in SOA-Umgebungen möglich ist. Die Ergebnisse legen nahe, dass der entwickelte Ansatz auch in großen Umgebungen erfolgreich angewendet werden kann.
Resumo:
Die zunehmende Vernetzung der Informations- und Kommunikationssysteme führt zu einer weiteren Erhöhung der Komplexität und damit auch zu einer weiteren Zunahme von Sicherheitslücken. Klassische Schutzmechanismen wie Firewall-Systeme und Anti-Malware-Lösungen bieten schon lange keinen Schutz mehr vor Eindringversuchen in IT-Infrastrukturen. Als ein sehr wirkungsvolles Instrument zum Schutz gegenüber Cyber-Attacken haben sich hierbei die Intrusion Detection Systeme (IDS) etabliert. Solche Systeme sammeln und analysieren Informationen von Netzwerkkomponenten und Rechnern, um ungewöhnliches Verhalten und Sicherheitsverletzungen automatisiert festzustellen. Während signatur-basierte Ansätze nur bereits bekannte Angriffsmuster detektieren können, sind anomalie-basierte IDS auch in der Lage, neue bisher unbekannte Angriffe (Zero-Day-Attacks) frühzeitig zu erkennen. Das Kernproblem von Intrusion Detection Systeme besteht jedoch in der optimalen Verarbeitung der gewaltigen Netzdaten und der Entwicklung eines in Echtzeit arbeitenden adaptiven Erkennungsmodells. Um diese Herausforderungen lösen zu können, stellt diese Dissertation ein Framework bereit, das aus zwei Hauptteilen besteht. Der erste Teil, OptiFilter genannt, verwendet ein dynamisches "Queuing Concept", um die zahlreich anfallenden Netzdaten weiter zu verarbeiten, baut fortlaufend Netzverbindungen auf, und exportiert strukturierte Input-Daten für das IDS. Den zweiten Teil stellt ein adaptiver Klassifikator dar, der ein Klassifikator-Modell basierend auf "Enhanced Growing Hierarchical Self Organizing Map" (EGHSOM), ein Modell für Netzwerk Normalzustand (NNB) und ein "Update Model" umfasst. In dem OptiFilter werden Tcpdump und SNMP traps benutzt, um die Netzwerkpakete und Hostereignisse fortlaufend zu aggregieren. Diese aggregierten Netzwerkpackete und Hostereignisse werden weiter analysiert und in Verbindungsvektoren umgewandelt. Zur Verbesserung der Erkennungsrate des adaptiven Klassifikators wird das künstliche neuronale Netz GHSOM intensiv untersucht und wesentlich weiterentwickelt. In dieser Dissertation werden unterschiedliche Ansätze vorgeschlagen und diskutiert. So wird eine classification-confidence margin threshold definiert, um die unbekannten bösartigen Verbindungen aufzudecken, die Stabilität der Wachstumstopologie durch neuartige Ansätze für die Initialisierung der Gewichtvektoren und durch die Stärkung der Winner Neuronen erhöht, und ein selbst-adaptives Verfahren eingeführt, um das Modell ständig aktualisieren zu können. Darüber hinaus besteht die Hauptaufgabe des NNB-Modells in der weiteren Untersuchung der erkannten unbekannten Verbindungen von der EGHSOM und der Überprüfung, ob sie normal sind. Jedoch, ändern sich die Netzverkehrsdaten wegen des Concept drif Phänomens ständig, was in Echtzeit zur Erzeugung nicht stationärer Netzdaten führt. Dieses Phänomen wird von dem Update-Modell besser kontrolliert. Das EGHSOM-Modell kann die neuen Anomalien effektiv erkennen und das NNB-Model passt die Änderungen in Netzdaten optimal an. Bei den experimentellen Untersuchungen hat das Framework erfolgversprechende Ergebnisse gezeigt. Im ersten Experiment wurde das Framework in Offline-Betriebsmodus evaluiert. Der OptiFilter wurde mit offline-, synthetischen- und realistischen Daten ausgewertet. Der adaptive Klassifikator wurde mit dem 10-Fold Cross Validation Verfahren evaluiert, um dessen Genauigkeit abzuschätzen. Im zweiten Experiment wurde das Framework auf einer 1 bis 10 GB Netzwerkstrecke installiert und im Online-Betriebsmodus in Echtzeit ausgewertet. Der OptiFilter hat erfolgreich die gewaltige Menge von Netzdaten in die strukturierten Verbindungsvektoren umgewandelt und der adaptive Klassifikator hat sie präzise klassifiziert. Die Vergleichsstudie zwischen dem entwickelten Framework und anderen bekannten IDS-Ansätzen zeigt, dass der vorgeschlagene IDSFramework alle anderen Ansätze übertrifft. Dies lässt sich auf folgende Kernpunkte zurückführen: Bearbeitung der gesammelten Netzdaten, Erreichung der besten Performanz (wie die Gesamtgenauigkeit), Detektieren unbekannter Verbindungen und Entwicklung des in Echtzeit arbeitenden Erkennungsmodells von Eindringversuchen.