9 resultados para Statistical maps.
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
Die gegenwärtige Entwicklung der internationalen Klimapolitik verlangt von Deutschland eine Reduktion seiner Treibhausgasemissionen. Wichtigstes Treibhausgas ist Kohlendioxid, das durch die Verbrennung fossiler Energieträger in die Atmosphäre freigesetzt wird. Die Reduktionsziele können prinzipiell durch eine Verminderung der Emissionen sowie durch die Schaffung von Kohlenstoffsenken erreicht werden. Senken beschreiben dabei die biologische Speicherung von Kohlenstoff in Böden und Wäldern. Eine wichtige Einflussgröße auf diese Prozesse stellt die räumliche Dynamik der Landnutzung einer Region dar. In dieser Arbeit wird das Modellsystem HILLS entwickelt und zur Simulation dieser komplexen Wirkbeziehungen im Bundesland Hessen genutzt. Ziel ist es, mit HILLS über eine Analyse des aktuellen Zustands hinaus auch Szenarien über Wege der zukünftigen regionalen Entwicklung von Landnutzung und ihrer Wirkung auf den Kohlenstoffhaushalt bis 2020 zu untersuchen. Für die Abbildung der räumlichen und zeitlichen Dynamik von Landnutzung in Hessen wird das Modell LUCHesse entwickelt. Seine Aufgabe ist die Simulation der relevanten Prozesse auf einem 1 km2 Raster, wobei die Raten der Änderung exogen als Flächentrends auf Ebene der hessischen Landkreise vorgegeben werden. LUCHesse besteht aus Teilmodellen für die Prozesse: (A) Ausbreitung von Siedlungs- und Gewerbefläche, (B) Strukturwandel im Agrarsektor sowie (C) Neuanlage von Waldflächen (Aufforstung). Jedes Teilmodell umfasst Methoden zur Bewertung der Standorteignung der Rasterzellen für unterschiedliche Landnutzungsklassen und zur Zuordnung der Trendvorgaben zu solchen Rasterzellen, die jeweils am besten für eine Landnutzungsklasse geeignet sind. Eine Validierung der Teilmodelle erfolgt anhand von statistischen Daten für den Zeitraum von 1990 bis 2000. Als Ergebnis eines Simulationslaufs werden für diskrete Zeitschritte digitale Karten der Landnutzugsverteilung in Hessen erzeugt. Zur Simulation der Kohlenstoffspeicherung wird eine modifizierte Version des Ökosystemmodells Century entwickelt (GIS-Century). Sie erlaubt einen gesteuerten Simulationslauf in Jahresschritten und unterstützt die Integration des Modells als Komponente in das HILLS Modellsystem. Es werden verschiedene Anwendungsschemata für GIS-Century entwickelt, mit denen die Wirkung der Stilllegung von Ackerflächen, der Aufforstung sowie der Bewirtschaftung bereits bestehender Wälder auf die Kohlenstoffspeicherung untersucht werden kann. Eine Validierung des Modells und der Anwendungsschemata erfolgt anhand von Feld- und Literaturdaten. HILLS implementiert eine sequentielle Kopplung von LUCHesse mit GIS-Century. Die räumliche Kopplung geschieht dabei auf dem 1 km2 Raster, die zeitliche Kopplung über die Einführung eines Landnutzungsvektors, der die Beschreibung der Landnutzungsänderung einer Rasterzelle während des Simulationszeitraums enthält. Außerdem integriert HILLS beide Modelle über ein dienste- und datenbankorientiertes Konzept in ein Geografisches Informationssystem (GIS). Auf diesem Wege können die GIS-Funktionen zur räumlichen Datenhaltung und Datenverarbeitung genutzt werden. Als Anwendung des Modellsystems wird ein Referenzszenario für Hessen mit dem Zeithorizont 2020 berechnet. Das Szenario setzt im Agrarsektor eine Umsetzung der AGENDA 2000 Politik voraus, die in großem Maße zu Stilllegung von Ackerflächen führt, während für den Bereich Siedlung und Gewerbe sowie Aufforstung die aktuellen Trends der Flächenausdehnung fortgeschrieben werden. Mit HILLS ist es nun möglich, die Wirkung dieser Landnutzungsänderungen auf die biologische Kohlenstoffspeicherung zu quantifizieren. Während die Ausdehnung von Siedlungsflächen als Kohlenstoffquelle identifiziert werden kann (37 kt C/a), findet sich die wichtigste Senke in der Bewirtschaftung bestehender Waldflächen (794 kt C/a). Weiterhin führen die Stilllegung von Ackerfläche (26 kt C/a) sowie Aufforstung (29 kt C/a) zu einer zusätzlichen Speicherung von Kohlenstoff. Für die Kohlenstoffspeicherung in Böden zeigen die Simulationsexperimente sehr klar, dass diese Senke nur von beschränkter Dauer ist.
Resumo:
The consumers are becoming more concerned about food quality, especially regarding how, when and where the foods are produced (Haglund et al., 1999; Kahl et al., 2004; Alföldi, et al., 2006). Therefore, during recent years there has been a growing interest in the methods for food quality assessment, especially in the picture-development methods as a complement to traditional chemical analysis of single compounds (Kahl et al., 2006). The biocrystallization as one of the picture-developing method is based on the crystallographic phenomenon that when crystallizing aqueous solutions of dihydrate CuCl2 with adding of organic solutions, originating, e.g., from crop samples, biocrystallograms are generated with reproducible crystal patterns (Kleber & Steinike-Hartung, 1959). Its output is a crystal pattern on glass plates from which different variables (numbers) can be calculated by using image analysis. However, there is a lack of a standardized evaluation method to quantify the morphological features of the biocrystallogram image. Therefore, the main sakes of this research are (1) to optimize an existing statistical model in order to describe all the effects that contribute to the experiment, (2) to investigate the effect of image parameters on the texture analysis of the biocrystallogram images, i.e., region of interest (ROI), color transformation and histogram matching on samples from the project 020E170/F financed by the Federal Ministry of Food, Agriculture and Consumer Protection(BMELV).The samples are wheat and carrots from controlled field and farm trials, (3) to consider the strongest effect of texture parameter with the visual evaluation criteria that have been developed by a group of researcher (University of Kassel, Germany; Louis Bolk Institute (LBI), Netherlands and Biodynamic Research Association Denmark (BRAD), Denmark) in order to clarify how the relation of the texture parameter and visual characteristics on an image is. The refined statistical model was accomplished by using a lme model with repeated measurements via crossed effects, programmed in R (version 2.1.0). The validity of the F and P values is checked against the SAS program. While getting from the ANOVA the same F values, the P values are bigger in R because of the more conservative approach. The refined model is calculating more significant P values. The optimization of the image analysis is dealing with the following parameters: ROI(Region of Interest which is the area around the geometrical center), color transformation (calculation of the 1 dimensional gray level value out of the three dimensional color information of the scanned picture, which is necessary for the texture analysis), histogram matching (normalization of the histogram of the picture to enhance the contrast and to minimize the errors from lighting conditions). The samples were wheat from DOC trial with 4 field replicates for the years 2003 and 2005, “market samples”(organic and conventional neighbors with the same variety) for 2004 and 2005, carrot where the samples were obtained from the University of Kassel (2 varieties, 2 nitrogen treatments) for the years 2004, 2005, 2006 and “market samples” of carrot for the years 2004 and 2005. The criterion for the optimization was repeatability of the differentiation of the samples over the different harvest(years). For different samples different ROIs were found, which reflect the different pictures. The best color transformation that shows efficiently differentiation is relied on gray scale, i.e., equal color transformation. The second dimension of the color transformation only appeared in some years for the effect of color wavelength(hue) for carrot treated with different nitrate fertilizer levels. The best histogram matching is the Gaussian distribution. The approach was to find a connection between the variables from textural image analysis with the different visual criteria. The relation between the texture parameters and visual evaluation criteria was limited to the carrot samples, especially, as it could be well differentiated by the texture analysis. It was possible to connect groups of variables of the texture analysis with groups of criteria from the visual evaluation. These selected variables were able to differentiate the samples but not able to classify the samples according to the treatment. Contrarily, in case of visual criteria which describe the picture as a whole there is a classification in 80% of the sample cases possible. Herewith, it clearly can find the limits of the single variable approach of the image analysis (texture analysis).
Resumo:
Diabetes mellitus is a disease where the glucosis-content of the blood does not automatically decrease to a ”normal” value between 70 mg/dl and 120 mg/dl (3,89 mmol/l and 6,67 mmol/l) between perhaps one hour (or two hours) after eating. Several instruments can be used to arrive at a relative low increase of the glucosis-content. Besides drugs (oral antidiabetica, insulin) the blood-sugar content can mainly be influenced by (i) eating, i.e., consumption of the right amount of food at the right time (ii) physical training (walking, cycling, swimming). In a recent paper the author has performed a regression analysis on the influence of eating during the night. The result was that one ”bread-unit” (12g carbon-hydrats) increases the blood-sugar by about 50 mg/dl, while one hour after eating the blood-sugar decreases by about 10 mg/dl per hour. By applying this result-assuming its correctness - it is easy to eat the right amount during the night and to arrive at a fastening blood-sugar (glucosis-content) in the morning of about 100 mg/dl (5,56 mmol/l). In this paper we try to incorporate some physical exercise into the model.
Resumo:
Auf dem Gebiet der Strukturdynamik sind computergestützte Modellvalidierungstechniken inzwischen weit verbreitet. Dabei werden experimentelle Modaldaten, um ein numerisches Modell für weitere Analysen zu korrigieren. Gleichwohl repräsentiert das validierte Modell nur das dynamische Verhalten der getesteten Struktur. In der Realität gibt es wiederum viele Faktoren, die zwangsläufig zu variierenden Ergebnissen von Modaltests führen werden: Sich verändernde Umgebungsbedingungen während eines Tests, leicht unterschiedliche Testaufbauten, ein Test an einer nominell gleichen aber anderen Struktur (z.B. aus der Serienfertigung), etc. Damit eine stochastische Simulation durchgeführt werden kann, muss eine Reihe von Annahmen für die verwendeten Zufallsvariablengetroffen werden. Folglich bedarf es einer inversen Methode, die es ermöglicht ein stochastisches Modell aus experimentellen Modaldaten zu identifizieren. Die Arbeit beschreibt die Entwicklung eines parameter-basierten Ansatzes, um stochastische Simulationsmodelle auf dem Gebiet der Strukturdynamik zu identifizieren. Die entwickelte Methode beruht auf Sensitivitäten erster Ordnung, mit denen Parametermittelwerte und Kovarianzen des numerischen Modells aus stochastischen experimentellen Modaldaten bestimmt werden können.