10 resultados para Spectrally-resolved fluorescence decays
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
Double photoionization of argon was studied by photon induced fluorescence spectroscopy (PIFS). Cross sections for the double photoionization into the {3s3p^5} {^1P}, {^3P} states of Ar^{+ +} are presented for exciting photon energies between threshold and 120 eV. In the threshold range the energy dependencies of these cross sections were determined for the first time. Singlet and triplet states are populated with comparable probabilities at equal excess energies, in contrast to predictions of the extended Wannier theory. At hv = 100eV the spin-or-bit splitting of the 3s3p^5 ^3P state was resolved, and a cross section for the production of Ar^{+ +} {3s^0}{3p^6 } {^1S_0} was determined for the first time.
Resumo:
Krypton atoms were excited by photons in the energy range from the threshold for photoionization of the 3d-electrons up to 120 eV. and the fluorescence radiation in the spectral range from 780 to 965 A was observed and analyzed. Cross sections for the population of excited states in KrIII with at least one 4s-hole resulting from an Auger transition as the first decay step and for KrII satellites were determined. The energy dependence of the 3d-ionization cross section in the 3d{_5/2}- and the 3d{_3/2}-threshold range was derived from the experimental data. The cross sections for production of KrII states were found to follow the energy dependence of the 3d-cross sections.
Resumo:
Absolute Kr 4s-electron photoionization cross sections as a function of the exciting-photon energy between 30 and 90 eV were measured by photon-induced fluorescence spectroscopy (PIFS). The measurements were compared with available experimental data and theoretical calculations.
Resumo:
Femtosecond time-resolved techniques with KETOF (kinetic energy time-of-flight) detection in a molecular beam are developed for studies of the vectorial dynamics of transition states. Application to the dissociation reaction of IHgI is presented. For this system, the complex [I---Hg---I](++)* is unstable and, through the symmetric and asymmetric stretch motions, yields different product fragments: [I---Hg---I](++)* -> HgI(X^2/sigma^+) + I(^2P_3/2) [or I*(^2P_l/2)] (1a); [I---Hg---I](++)* -> Hg(^1S_0) + I(^2P_3/2) + I(^2P_3/2) [or I* (^2P_1/2)] (1 b). These two channels, (1a) and (1b), lead to different kinetic energy distributions in the products. It is shown that the motion of the wave packet in the transition-state region can be observed by MPI mass detection; the transient time ranges from 120 to 300 fs depending on the available energy. With polarized pulses, the vectorial properties (transition moments alignment relative to recoil direction) are studied for fragment separations on the femtosecond time scale. The results indicate the nature of the structure (symmetry properties) and the correlation to final products. For 311-nm excitation, no evidence of crossing between the I and I* potentials is found at the internuclear separations studied. (Results for 287-nm excitation are also presented.) Molecular dynamics simulations and studies by laser-induced fluorescence support these findings.
Resumo:
The real-time dynamics of Na_n (n=3-21) cluster multiphoton ionization and fragmentation has been studied in beam experiments applying femtosecond pump-probe techniques in combination with ion and electron spectroscopy. Three dimensional wave packet motions in the trimer Na_3 ground state X and excited state B have been observed. We report the first study of cluster properties (energy, bandwidth and lifetime of intermediate resonances Na_n^*) with femtosecond laser pulses. The observation of four absorption resonances for the cluster Na_8 with different energy widths and different decay patterns is more difficult to interpret by surface plasmon like resonances than by molecular structure and dynamics. Timeresolved fragmentation of cluster ions Na_n^+ indicates that direct photo-induced fragmentation processes are more important at short times than the statistical unimolecular decay.
Resumo:
The dynamics of molecular multiphoton ionization and fragmentation of a diatomic molecule (Na_2) have been studied in molecular beam experiments. Femtosecond laser pulses from an amplified colliding-pulse mode-locked (CPM) ring dye laser are employed to induce and probe the molecular transitions. The final continuum states are analyzed by photoelectron spectroscopy, by ion mass spectrometry and by measuring the kinetic energy of the formed ionic fragments. Pump-probe spectra employing 70-fs laser pulses have been measured to study the time dependence of molecular multiphoton ionization and fragmentation. The oscillatory structure of the transient spectra showing the dynamics on the femtosecond time scale can best be understood in terms of the motion of wave packets in bound molecular potentials. The transient Na_2^+ ionization and the transient Na^+ fragmentation spectra show that contributions from direct photoionization of a singly excited electronic state and from excitation and autoionization of a bound doubly excited molecular state determine the time evolution of molecular multiphoton ionization.
Resumo:
We report here the first experimental study of femtosecond time-resolved molecular multiphoton ionization. Femtosecond pump-probe techniques are combined with time-of-flight spectroscopy to measure transient ionization spectra of Na_2 in a molecular-beam experiment. The wave-packet motions in different molecular potentials show that incoherent contributions from direct photoionization of a singly excited state and from excitation and autoionization of a bound doubly excited molecular state determine the observed transient ionization signal.
Resumo:
We present a comparison between experimental and theoretical results for pump/probe multiphoton ionizing transitions of the sodium dimer, initiated by femtosecond laser pulses. It is shown that the motion of vibrational wavepackets in two electronic states is probed simultaneously and their dynamics is reflected in the total Na^+_2 ion signal which is recorded as a function of the time delay between pump and probe pulse. The time dependent quantum calculations demonstrate that two ionization pathways leading to the same final states of the molecularion exist: one gives an oscillating contribution to the ion signal, the other yields a constant background. From additional measurements of the Na^+ -transient photofragmentation spectrum it is deduced that another ionization process leading to different final ionic states exists. The process includes the excitation of a doubly excitedbound Rydberg state. This conclusion is supported by the theoretical simulation.
Resumo:
Interatomic coulombic decay (ICD), a radiationless transition in weakly bonded systems, such as solutes or van der Waals bound aggregates, is an effective source for electrons of low kinetic energy. So far, the ICD processes could only be probed in ultra-high vacuum by using electron and/or ion spectroscopy. Here we show that resonant ICD processes can also be detected by measuring the subsequently emitted characteristic fluorescence radiation, which makes their study in dense media possible.