13 resultados para Spectrally bounded
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
Analysis by reduction is a method used in linguistics for checking the correctness of sentences of natural languages. This method is modelled by restarting automata. All types of restarting automata considered in the literature up to now accept at least the deterministic context-free languages. Here we introduce and study a new type of restarting automaton, the so-called t-RL-automaton, which is an RL-automaton that is rather restricted in that it has a window of size one only, and that it works under a minimal acceptance condition. On the other hand, it is allowed to perform up to t rewrite (that is, delete) steps per cycle. Here we study the gap-complexity of these automata. The membership problem for a language that is accepted by a t-RL-automaton with a bounded number of gaps can be solved in polynomial time. On the other hand, t-RL-automata with an unbounded number of gaps accept NP-complete languages.
Resumo:
The motion of a viscous incompressible fluid flow in bounded domains with a smooth boundary can be described by the nonlinear Navier-Stokes equations. This description corresponds to the so-called Eulerian approach. We develop a new approximation method for the Navier-Stokes equations in both the stationary and the non-stationary case by a suitable coupling of the Eulerian and the Lagrangian representation of the flow, where the latter is defined by the trajectories of the particles of the fluid. The method leads to a sequence of uniquely determined approximate solutions with a high degree of regularity containing a convergent subsequence with limit function v such that v is a weak solution of the Navier-Stokes equations.
Resumo:
The method of approximate approximations, introduced by Maz'ya [1], can also be used for the numerical solution of boundary integral equations. In this case, the matrix of the resulting algebraic system to compute an approximate source density depends only on the position of a finite number of boundary points and on the direction of the normal vector in these points (Boundary Point Method). We investigate this approach for the Stokes problem in the whole space and for the Stokes boundary value problem in a bounded convex domain G subset R^2, where the second part consists of three steps: In a first step the unknown potential density is replaced by a linear combination of exponentially decreasing basis functions concentrated near the boundary points. In a second step, integration over the boundary partial G is replaced by integration over the tangents at the boundary points such that even analytical expressions for the potential approximations can be obtained. In a third step, finally, the linear algebraic system is solved to determine an approximate density function and the resulting solution of the Stokes boundary value problem. Even not convergent the method leads to an efficient approximation of the form O(h^2) + epsilon, where epsilon can be chosen arbitrarily small.
Resumo:
In dieser Arbeit werden zwei Aspekte bei Randwertproblemen der linearen Elastizitätstheorie untersucht: die Approximation von Lösungen auf unbeschränkten Gebieten und die Änderung von Symmetrieklassen unter speziellen Transformationen. Ausgangspunkt der Dissertation ist das von Specovius-Neugebauer und Nazarov in "Artificial boundary conditions for Petrovsky systems of second order in exterior domains and in other domains of conical type"(Math. Meth. Appl. Sci, 2004; 27) eingeführte Verfahren zur Untersuchung von Petrovsky-Systemen zweiter Ordnung in Außenraumgebieten und Gebieten mit konischen Ausgängen mit Hilfe der Methode der künstlichen Randbedingungen. Dabei werden für die Ermittlung von Lösungen der Randwertprobleme die unbeschränkten Gebiete durch das Abschneiden mit einer Kugel beschränkt, und es wird eine künstliche Randbedingung konstruiert, um die Lösung des Problems möglichst gut zu approximieren. Das Verfahren wird dahingehend verändert, dass das abschneidende Gebiet ein Polyeder ist, da es für die Lösung des Approximationsproblems mit üblichen Finite-Element-Diskretisierungen von Vorteil sei, wenn das zu triangulierende Gebiet einen polygonalen Rand besitzt. Zu Beginn der Arbeit werden die wichtigsten funktionalanalytischen Begriffe und Ergebnisse der Theorie elliptischer Differentialoperatoren vorgestellt. Danach folgt der Hauptteil der Arbeit, der sich in drei Bereiche untergliedert. Als erstes wird für abschneidende Polyedergebiete eine formale Konstruktion der künstlichen Randbedingungen angegeben. Danach folgt der Nachweis der Existenz und Eindeutigkeit der Lösung des approximativen Randwertproblems auf dem abgeschnittenen Gebiet und im Anschluss wird eine Abschätzung für den resultierenden Abschneidefehler geliefert. An die theoretischen Ausführungen schließt sich die Betrachtung von Anwendungsbereiche an. Hier werden ebene Rissprobleme und Polarisationsmatrizen dreidimensionaler Außenraumprobleme der Elastizitätstheorie erläutert. Der letzte Abschnitt behandelt den zweiten Aspekt der Arbeit, den Bereich der Algebraischen Äquivalenzen. Hier geht es um die Transformation von Symmetrieklassen, um die Kenntnis der Fundamentallösung der Elastizitätsprobleme für transversalisotrope Medien auch für Medien zu nutzen, die nicht von transversalisotroper Struktur sind. Eine allgemeine Darstellung aller Klassen konnte hier nicht geliefert werden. Als Beispiel für das Vorgehen wird eine Klasse von orthotropen Medien im dreidimensionalen Fall angegeben, die sich auf den Fall der Transversalisotropie reduzieren lässt.
Resumo:
We study several extensions of the notion of alternation from context-free grammars to context-sensitive and arbitrary phrase-structure grammars. Thereby new grammatical characterizations are obtained for the class of languages that are accepted by alternating pushdown automata.
Resumo:
The non-stationary nonlinear Navier-Stokes equations describe the motion of a viscous incompressible fluid flow for 0
Resumo:
In the present paper we use a time delay epsilon > 0 for an energy conserving approximation of the nonlinear term of the non-stationary Navier-Stokes equations. We prove that the corresponding initial value problem (N_epsilon)in smoothly bounded domains G \subseteq R^3 is well-posed. Passing to the limit epsilon \rightarrow 0 we show that the sequence of stabilized solutions has an accumulation point such that it solves the Navier-Stokes problem (N_0) in a weak sense (Hopf).
Resumo:
We consider a first order implicit time stepping procedure (Euler scheme) for the non-stationary Stokes equations in smoothly bounded domains of R3. Using energy estimates we can prove optimal convergence properties in the Sobolev spaces Hm(G) (m = 0;1;2) uniformly in time, provided that the solution of the Stokes equations has a certain degree of regularity. For the solution of the resulting Stokes resolvent boundary value problems we use a representation in form of hydrodynamical volume and boundary layer potentials, where the unknown source densities of the latter can be determined from uniquely solvable boundary integral equations’ systems. For the numerical computation of the potentials and the solution of the boundary integral equations a boundary element method of collocation type is used. Some simulations of a model problem are carried out and illustrate the efficiency of the method.
Resumo:
Das von Maz'ya eingeführte Approximationsverfahren, die Methode der näherungsweisen Näherungen (Approximate Approximations), kann auch zur numerischen Lösung von Randintegralgleichungen verwendet werden (Randpunktmethode). In diesem Fall hängen die Komponenten der Matrix des resultierenden Gleichungssystems zur Berechnung der Näherung für die Dichte nur von der Position der Randpunkte und der Richtung der äußeren Einheitsnormalen in diesen Punkten ab. Dieses numerisches Verfahren wird am Beispiel des Dirichlet Problems für die Laplace Gleichung und die Stokes Gleichungen in einem beschränkten zweidimensionalem Gebiet untersucht. Die Randpunktmethode umfasst drei Schritte: Im ersten Schritt wird die unbekannte Dichte durch eine Linearkombination von radialen, exponentiell abklingenden Basisfunktionen approximiert. Im zweiten Schritt wird die Integration über den Rand durch die Integration über die Tangenten in Randpunkten ersetzt. Für die auftretende Näherungspotentiale können sogar analytische Ausdrücke gewonnen werden. Im dritten Schritt wird das lineare Gleichungssystem gelöst, und eine Näherung für die unbekannte Dichte und damit auch für die Lösung der Randwertaufgabe konstruiert. Die Konvergenz dieses Verfahrens wird für glatte konvexe Gebiete nachgewiesen.
Resumo:
This paper contributes to the study of Freely Rewriting Restarting Automata (FRR-automata) and Parallel Communicating Grammar Systems (PCGS), which both are useful models in computational linguistics. For PCGSs we study two complexity measures called 'generation complexity' and 'distribution complexity', and we prove that a PCGS Pi, for which the generation complexity and the distribution complexity are both bounded by constants, can be transformed into a freely rewriting restarting automaton of a very restricted form. From this characterization it follows that the language L(Pi) generated by Pi is semi-linear, that its characteristic analysis is of polynomial size, and that this analysis can be computed in polynomial time.
Resumo:
Relativistic density functional theory is widely applied in molecular calculations with heavy atoms, where relativistic and correlation effects are on the same footing. Variational stability of the Dirac Hamiltonian is a very important field of research from the beginning of relativistic molecular calculations on, among efforts for accuracy, efficiency, and density functional formulation, etc. Approximations of one- or two-component methods and searching for suitable basis sets are two major means for good projection power against the negative continuum. The minimax two-component spinor linear combination of atomic orbitals (LCAO) is applied in the present work for both light and super-heavy one-electron systems, providing good approximations in the whole energy spectrum, being close to the benchmark minimax finite element method (FEM) values and without spurious and contaminated states, in contrast to the presence of these artifacts in the traditional four-component spinor LCAO. The variational stability assures that minimax LCAO is bounded from below. New balanced basis sets, kinetic and potential defect balanced (TVDB), following the minimax idea, are applied with the Dirac Hamiltonian. Its performance in the same super-heavy one-electron quasi-molecules shows also very good projection capability against variational collapse, as the minimax LCAO is taken as the best projection to compare with. The TVDB method has twice as many basis coefficients as four-component spinor LCAO, which becomes now linear and overcomes the disadvantage of great time-consumption in the minimax method. The calculation with both the TVDB method and the traditional LCAO method for the dimers with elements in group 11 of the periodic table investigates their difference. New bigger basis sets are constructed than in previous research, achieving high accuracy within the functionals involved. Their difference in total energy is much smaller than the basis incompleteness error, showing that the traditional four-spinor LCAO keeps enough projection power from the numerical atomic orbitals and is suitable in research on relativistic quantum chemistry. In scattering investigations for the same comparison purpose, the failure of the traditional LCAO method of providing a stable spectrum with increasing size of basis sets is contrasted to the TVDB method, which contains no spurious states already without pre-orthogonalization of basis sets. Keeping the same conditions including the accuracy of matrix elements shows that the variational instability prevails over the linear dependence of the basis sets. The success of the TVDB method manifests its capability not only in relativistic quantum chemistry but also for scattering and under the influence of strong external electronic and magnetic fields. The good accuracy in total energy with large basis sets and the good projection property encourage wider research on different molecules, with better functionals, and on small effects.
Resumo:
In der vorliegenden Dissertation werden Systeme von parallel arbeitenden und miteinander kommunizierenden Restart-Automaten (engl.: systems of parallel communicating restarting automata; abgekürzt PCRA-Systeme) vorgestellt und untersucht. Dabei werden zwei bekannte Konzepte aus den Bereichen Formale Sprachen und Automatentheorie miteinander vescrknüpft: das Modell der Restart-Automaten und die sogenannten PC-Systeme (systems of parallel communicating components). Ein PCRA-System besteht aus endlich vielen Restart-Automaten, welche einerseits parallel und unabhängig voneinander lokale Berechnungen durchführen und andererseits miteinander kommunizieren dürfen. Die Kommunikation erfolgt dabei durch ein festgelegtes Kommunikationsprotokoll, das mithilfe von speziellen Kommunikationszuständen realisiert wird. Ein wesentliches Merkmal hinsichtlich der Kommunikationsstruktur in Systemen von miteinander kooperierenden Komponenten ist, ob die Kommunikation zentralisiert oder nichtzentralisiert erfolgt. Während in einer nichtzentralisierten Kommunikationsstruktur jede Komponente mit jeder anderen Komponente kommunizieren darf, findet jegliche Kommunikation innerhalb einer zentralisierten Kommunikationsstruktur ausschließlich mit einer ausgewählten Master-Komponente statt. Eines der wichtigsten Resultate dieser Arbeit zeigt, dass zentralisierte Systeme und nichtzentralisierte Systeme die gleiche Berechnungsstärke besitzen (das ist im Allgemeinen bei PC-Systemen nicht so). Darüber hinaus bewirkt auch die Verwendung von Multicast- oder Broadcast-Kommunikationsansätzen neben Punkt-zu-Punkt-Kommunikationen keine Erhöhung der Berechnungsstärke. Desweiteren wird die Ausdrucksstärke von PCRA-Systemen untersucht und mit der von PC-Systemen von endlichen Automaten und mit der von Mehrkopfautomaten verglichen. PC-Systeme von endlichen Automaten besitzen bekanntermaßen die gleiche Ausdrucksstärke wie Einwegmehrkopfautomaten und bilden eine untere Schranke für die Ausdrucksstärke von PCRA-Systemen mit Einwegkomponenten. Tatsächlich sind PCRA-Systeme auch dann stärker als PC-Systeme von endlichen Automaten, wenn die Komponenten für sich genommen die gleiche Ausdrucksstärke besitzen, also die regulären Sprachen charakterisieren. Für PCRA-Systeme mit Zweiwegekomponenten werden als untere Schranke die Sprachklassen der Zweiwegemehrkopfautomaten im deterministischen und im nichtdeterministischen Fall gezeigt, welche wiederum den bekannten Komplexitätsklassen L (deterministisch logarithmischer Platz) und NL (nichtdeterministisch logarithmischer Platz) entsprechen. Als obere Schranke wird die Klasse der kontextsensitiven Sprachen gezeigt. Außerdem werden Erweiterungen von Restart-Automaten betrachtet (nonforgetting-Eigenschaft, shrinking-Eigenschaft), welche bei einzelnen Komponenten eine Erhöhung der Berechnungsstärke bewirken, in Systemen jedoch deren Stärke nicht erhöhen. Die von PCRA-Systemen charakterisierten Sprachklassen sind unter diversen Sprachoperationen abgeschlossen und einige Sprachklassen sind sogar abstrakte Sprachfamilien (sogenannte AFL's). Abschließend werden für PCRA-Systeme spezifische Probleme auf ihre Entscheidbarkeit hin untersucht. Es wird gezeigt, dass Leerheit, Universalität, Inklusion, Gleichheit und Endlichkeit bereits für Systeme mit zwei Restart-Automaten des schwächsten Typs nicht semientscheidbar sind. Für das Wortproblem wird gezeigt, dass es im deterministischen Fall in quadratischer Zeit und im nichtdeterministischen Fall in exponentieller Zeit entscheidbar ist.
Resumo:
Gegenstand der vorliegenden Arbeit ist die Analyse verschiedener Formalismen zur Berechnung binärer Wortrelationen. Dabei ist die Grundlage aller hier ausgeführten Betrachtungen das Modell der Restart-Automaten, welches 1995 von Jancar et. al. eingeführt wurde. Zum einen wird das bereits für Restart-Automaten bekannte Konzept der input/output- und proper-Relationen weiterführend untersucht, sowie auf Systeme von zwei parallel arbeitenden und miteinander kommunizierenden Restart-Automaten (PC-Systeme) erweitert. Zum anderen wird eine Variante der Restart-Automaten eingeführt, die sich an klassischen Automatenmodellen zur Berechnung von Relationen orientiert. Mit Hilfe dieser Mechanismen kann gezeigt werden, dass einige Klassen, die durch input/output- und proper-Relationen von Restart Automaten definiert werden, mit den traditionellen Relationsklassen der Rationalen Relationen und der Pushdown-Relationen übereinstimmen. Weiterhin stellt sich heraus, dass das Konzept der parallel kommunizierenden Automaten äußerst mächtig ist, da bereits die Klasse der proper-Relationen von monotonen PC-Systemen alle berechenbaren Relationen umfasst. Der Haupteil der Arbeit beschäftigt sich mit den so genannten Restart-Transducern, welche um eine Ausgabefunktion erweiterte Restart-Automaten sind. Es zeigt sich, dass sich insbesondere dieses Modell mit seinen verschiedenen Erweiterungen und Einschränkungen dazu eignet, eine umfassende Hierarchie von Relationsklassen zu etablieren. In erster Linie seien hier die verschiedenen Typen von monotonen Restart-Transducern erwähnt, mit deren Hilfe viele interessante neue und bekannte Relationsklassen innerhalb der längenbeschränkten Pushdown-Relationen charakterisiert werden. Abschließend wird, im Kontrast zu den vorhergehenden Modellen, das nicht auf Restart-Automaten basierende Konzept des Übersetzens durch Beobachtung ("Transducing by Observing") zur Relationsberechnung eingeführt. Dieser, den Restart-Transducern nicht unähnliche Mechanismus, wird im weitesten Sinne dazu genutzt, einen anderen Blickwinkel auf die von Restart-Transducern definierten Relationen einzunehmen, sowie eine obere Schranke für die Berechnungskraft der Restart-Transducer zu gewinnen.