4 resultados para Southampton (GB)

em Universitätsbibliothek Kassel, Universität Kassel, Germany


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Data mining means to summarize information from large amounts of raw data. It is one of the key technologies in many areas of economy, science, administration and the internet. In this report we introduce an approach for utilizing evolutionary algorithms to breed fuzzy classifier systems. This approach was exercised as part of a structured procedure by the students Achler, Göb and Voigtmann as contribution to the 2006 Data-Mining-Cup contest, yielding encouragingly positive results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Self-assembled monolayers (SAMs) on solid surfaces are of great current interest in science and nanotechnology. This thesis describes the preparation of several symmetrically 1,1’-substituted ferrocene derivatives that contain anchoring groups suitable for chemisorption on gold and may give rise to SAMs with electrochemically switchable properties. The binding groups are isocyano (-NC), isothiocyanato (-NCS), phosphanyl (-PPh2), thioether (-SR) and thienyl. In the context of SAM fabrication, isothiocyanates and phosphanes are adsorbate systems which, surprisingly, have remained essentially unexplored. SAMs on gold have been fabricated with the adsorbates from solution and investigated primarily by X-ray photoelectron spectroscopy and near-edge X-ray absorption fine structure spectroscopy. The results of these analytical investigations are presented and discussed in matters of the film quality and possible binding modes. The quality of self-assembled monolayers fabricated from 1,1’-diisocyanoferrocene and 1,1’-diisothiocyanatoferrocene turned out to be superior to that of films based on the other adsorbate species investigated. Films of those absorbates as well as of dppf afforded well-defined SAMs of good quality. All other films of this study based on sulfur containing anchoring groups exhibit chemical inhomogeneity and low orientational order of the film constituents and therefore failed to give rise to well-defined SAMs. Surface coordination chemistry is naturally related to molecular coordination chemistry. Since all SAMs described in this thesis were prepared on gold (111) surfaces, the ferrocene-based ligands of this study have been investigated in their ability for complexation towards gold(I). The sulfur-based ferrocene ligands [fc(SR)2] failed to give stable gold(I) complexes. In contrast, 1,1’-diisocyanoferrocene (1) proved to be an excellent ligand for the complexation of gold(I). Several complexes were prepared and characterised utilising a series of gold(I) acetylides. These complexes show interesting structural motifs in the solid state, since intramolecular aurophilic interactions lead to a parallel orientation of the isocyano moieties, combined with an antiparallel alignment of neighbouring units. The reaction of 1 with the gold(I) acetylide [Au(C≡C–Fc)]n turned out to be very unusual, since the two chemically equivalent isocyano groups undergo a different reaction. One group shows an ordinary coordination and the other one undergoes an extraordinary 1,1-insertion into the Au-C bond. As a sideline of the research of this thesis several ferrocene derivatives have been tested for their suitability for potential surface reactions. Copper(I) mediated 1,3-dipolar cycloadditions of azidoferrocene derivatives with terminal alkynes appeared very promising in this context, but failed to a certain extent in terms of ‘click’ chemistry, since the formation of the triazoles depended on the strict exclusion of oxygen and moisture and yields were only moderate. Staudinger reactions between dppf and azidoferrocene derivatives were also tested. The nucleophilic additions of secondary amines to 1,1’-diisothiocyanatoferrocene led to the respective thiourea derivatives in quantitative yields.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The scope of this work is the fundamental growth, tailoring and characterization of self-organized indium arsenide quantum dots (QDs) and their exploitation as active region for diode lasers emitting in the 1.55 µm range. This wavelength regime is especially interesting for long-haul telecommunications as optical fibers made from silica glass have the lowest optical absorption. Molecular Beam Epitaxy is utilized as fabrication technique for the quantum dots and laser structures. The results presented in this thesis depict the first experimental work for which this reactor was used at the University of Kassel. Most research in the field of self-organized quantum dots has been conducted in the InAs/GaAs material system. It can be seen as the model system of self-organized quantum dots, but is not suitable for the targeted emission wavelength. Light emission from this system at 1.55 µm is hard to accomplish. To stay as close as possible to existing processing technology, the In(AlGa)As/InP (100) material system is deployed. Depending on the epitaxial growth technique and growth parameters this system has the drawback of producing a wide range of nano species besides quantum dots. Best known are the elongated quantum dashes (QDash). Such structures are preferentially formed, if InAs is deposited on InP. This is related to the low lattice-mismatch of 3.2 %, which is less than half of the value in the InAs/GaAs system. The task of creating round-shaped and uniform QDs is rendered more complex considering exchange effects of arsenic and phosphorus as well as anisotropic effects on the surface that do not need to be dealt with in the InAs/GaAs case. While QDash structures haven been studied fundamentally as well as in laser structures, they do not represent the theoretical ideal case of a zero-dimensional material. Creating round-shaped quantum dots on the InP(100) substrate remains a challenging task. Details of the self-organization process are still unknown and the formation of the QDs is not fully understood yet. In the course of the experimental work a novel growth concept was discovered and analyzed that eases the fabrication of QDs. It is based on different crystal growth and ad-atom diffusion processes under supply of different modifications of the arsenic atmosphere in the MBE reactor. The reactor is equipped with special valved cracking effusion cells for arsenic and phosphorus. It represents an all-solid source configuration that does not rely on toxic gas supply. The cracking effusion cell are able to create different species of arsenic and phosphorus. This constitutes the basis of the growth concept. With this method round-shaped QD ensembles with superior optical properties and record-low photoluminescence linewidth were achieved. By systematically varying the growth parameters and working out a detailed analysis of the experimental data a range of parameter values, for which the formation of QDs is favored, was found. A qualitative explanation of the formation characteristics based on the surface migration of In ad-atoms is developed. Such tailored QDs are finally implemented as active region in a self-designed diode laser structure. A basic characterization of the static and temperature-dependent properties was carried out. The QD lasers exceed a reference quantum well laser in terms of inversion conditions and temperature-dependent characteristics. Pulsed output powers of several hundred milli watt were measured at room temperature. In particular, the lasers feature a high modal gain that even allowed cw-emission at room temperature of a processed ridge wave guide device as short as 340 µm with output powers of 17 mW. Modulation experiments performed at the Israel Institute of Technology (Technion) showed a complex behavior of the QDs in the laser cavity. Despite the fact that the laser structure is not fully optimized for a high-speed device, data transmission capabilities of 15 Gb/s combined with low noise were achieved. To the best of the author`s knowledge, this renders the lasers the fastest QD devices operating at 1.55 µm. The thesis starts with an introductory chapter that pronounces the advantages of optical fiber communication in general. Chapter 2 will introduce the fundamental knowledge that is necessary to understand the importance of the active region`s dimensions for the performance of a diode laser. The novel growth concept and its experimental analysis are presented in chapter 3. Chapter 4 finally contains the work on diode lasers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Die zunehmende Vernetzung der Informations- und Kommunikationssysteme führt zu einer weiteren Erhöhung der Komplexität und damit auch zu einer weiteren Zunahme von Sicherheitslücken. Klassische Schutzmechanismen wie Firewall-Systeme und Anti-Malware-Lösungen bieten schon lange keinen Schutz mehr vor Eindringversuchen in IT-Infrastrukturen. Als ein sehr wirkungsvolles Instrument zum Schutz gegenüber Cyber-Attacken haben sich hierbei die Intrusion Detection Systeme (IDS) etabliert. Solche Systeme sammeln und analysieren Informationen von Netzwerkkomponenten und Rechnern, um ungewöhnliches Verhalten und Sicherheitsverletzungen automatisiert festzustellen. Während signatur-basierte Ansätze nur bereits bekannte Angriffsmuster detektieren können, sind anomalie-basierte IDS auch in der Lage, neue bisher unbekannte Angriffe (Zero-Day-Attacks) frühzeitig zu erkennen. Das Kernproblem von Intrusion Detection Systeme besteht jedoch in der optimalen Verarbeitung der gewaltigen Netzdaten und der Entwicklung eines in Echtzeit arbeitenden adaptiven Erkennungsmodells. Um diese Herausforderungen lösen zu können, stellt diese Dissertation ein Framework bereit, das aus zwei Hauptteilen besteht. Der erste Teil, OptiFilter genannt, verwendet ein dynamisches "Queuing Concept", um die zahlreich anfallenden Netzdaten weiter zu verarbeiten, baut fortlaufend Netzverbindungen auf, und exportiert strukturierte Input-Daten für das IDS. Den zweiten Teil stellt ein adaptiver Klassifikator dar, der ein Klassifikator-Modell basierend auf "Enhanced Growing Hierarchical Self Organizing Map" (EGHSOM), ein Modell für Netzwerk Normalzustand (NNB) und ein "Update Model" umfasst. In dem OptiFilter werden Tcpdump und SNMP traps benutzt, um die Netzwerkpakete und Hostereignisse fortlaufend zu aggregieren. Diese aggregierten Netzwerkpackete und Hostereignisse werden weiter analysiert und in Verbindungsvektoren umgewandelt. Zur Verbesserung der Erkennungsrate des adaptiven Klassifikators wird das künstliche neuronale Netz GHSOM intensiv untersucht und wesentlich weiterentwickelt. In dieser Dissertation werden unterschiedliche Ansätze vorgeschlagen und diskutiert. So wird eine classification-confidence margin threshold definiert, um die unbekannten bösartigen Verbindungen aufzudecken, die Stabilität der Wachstumstopologie durch neuartige Ansätze für die Initialisierung der Gewichtvektoren und durch die Stärkung der Winner Neuronen erhöht, und ein selbst-adaptives Verfahren eingeführt, um das Modell ständig aktualisieren zu können. Darüber hinaus besteht die Hauptaufgabe des NNB-Modells in der weiteren Untersuchung der erkannten unbekannten Verbindungen von der EGHSOM und der Überprüfung, ob sie normal sind. Jedoch, ändern sich die Netzverkehrsdaten wegen des Concept drif Phänomens ständig, was in Echtzeit zur Erzeugung nicht stationärer Netzdaten führt. Dieses Phänomen wird von dem Update-Modell besser kontrolliert. Das EGHSOM-Modell kann die neuen Anomalien effektiv erkennen und das NNB-Model passt die Änderungen in Netzdaten optimal an. Bei den experimentellen Untersuchungen hat das Framework erfolgversprechende Ergebnisse gezeigt. Im ersten Experiment wurde das Framework in Offline-Betriebsmodus evaluiert. Der OptiFilter wurde mit offline-, synthetischen- und realistischen Daten ausgewertet. Der adaptive Klassifikator wurde mit dem 10-Fold Cross Validation Verfahren evaluiert, um dessen Genauigkeit abzuschätzen. Im zweiten Experiment wurde das Framework auf einer 1 bis 10 GB Netzwerkstrecke installiert und im Online-Betriebsmodus in Echtzeit ausgewertet. Der OptiFilter hat erfolgreich die gewaltige Menge von Netzdaten in die strukturierten Verbindungsvektoren umgewandelt und der adaptive Klassifikator hat sie präzise klassifiziert. Die Vergleichsstudie zwischen dem entwickelten Framework und anderen bekannten IDS-Ansätzen zeigt, dass der vorgeschlagene IDSFramework alle anderen Ansätze übertrifft. Dies lässt sich auf folgende Kernpunkte zurückführen: Bearbeitung der gesammelten Netzdaten, Erreichung der besten Performanz (wie die Gesamtgenauigkeit), Detektieren unbekannter Verbindungen und Entwicklung des in Echtzeit arbeitenden Erkennungsmodells von Eindringversuchen.