9 resultados para Soil CO2 emission

em Universitätsbibliothek Kassel, Universität Kassel, Germany


Relevância:

80.00% 80.00%

Publicador:

Resumo:

There have being increasing debate on the prospects of biofuel becoming the next best alternative to solving the problem of CO2 emission and the escalating fuel prices, but the question is whether this assertion is true and also if it comes without any cost to pay. This paper seeks to find out whether this much praised alternative to solving these problems is a better option or another way for the developed countries to find more areas where they could get cheap land, labour and raw materials for the production of biofuel. This will focus mainly on some effects the growing biofuel production has on food security, livelihood of people, the environment and some land conflicts developing as a result of land grabbing for biofuel production in the developing countries.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Landwirtschaft spielt eine zentrale Rolle im Erdsystem. Sie trägt durch die Emission von CO2, CH4 und N2O zum Treibhauseffekt bei, kann Bodendegradation und Eutrophierung verursachen, regionale Wasserkreisläufe verändern und wird außerdem stark vom Klimawandel betroffen sein. Da all diese Prozesse durch die zugrunde liegenden Nährstoff- und Wasserflüsse eng miteinander verknüpft sind, sollten sie in einem konsistenten Modellansatz betrachtet werden. Dennoch haben Datenmangel und ungenügendes Prozessverständnis dies bis vor kurzem auf der globalen Skala verhindert. In dieser Arbeit wird die erste Version eines solchen konsistenten globalen Modellansatzes präsentiert, wobei der Schwerpunkt auf der Simulation landwirtschaftlicher Erträge und den resultierenden N2O-Emissionen liegt. Der Grund für diese Schwerpunktsetzung liegt darin, dass die korrekte Abbildung des Pflanzenwachstums eine essentielle Voraussetzung für die Simulation aller anderen Prozesse ist. Des weiteren sind aktuelle und potentielle landwirtschaftliche Erträge wichtige treibende Kräfte für Landnutzungsänderungen und werden stark vom Klimawandel betroffen sein. Den zweiten Schwerpunkt bildet die Abschätzung landwirtschaftlicher N2O-Emissionen, da bislang kein prozessbasiertes N2O-Modell auf der globalen Skala eingesetzt wurde. Als Grundlage für die globale Modellierung wurde das bestehende Agrarökosystemmodell Daycent gewählt. Neben der Schaffung der Simulationsumgebung wurden zunächst die benötigten globalen Datensätze für Bodenparameter, Klima und landwirtschaftliche Bewirtschaftung zusammengestellt. Da für Pflanzzeitpunkte bislang keine globale Datenbasis zur Verfügung steht, und diese sich mit dem Klimawandel ändern werden, wurde eine Routine zur Berechnung von Pflanzzeitpunkten entwickelt. Die Ergebnisse zeigen eine gute Übereinstimmung mit Anbaukalendern der FAO, die für einige Feldfrüchte und Länder verfügbar sind. Danach wurde das Daycent-Modell für die Ertragsberechnung von Weizen, Reis, Mais, Soja, Hirse, Hülsenfrüchten, Kartoffel, Cassava und Baumwolle parametrisiert und kalibriert. Die Simulationsergebnisse zeigen, dass Daycent die wichtigsten Klima-, Boden- und Bewirtschaftungseffekte auf die Ertragsbildung korrekt abbildet. Berechnete Länderdurchschnitte stimmen gut mit Daten der FAO überein (R2 = 0.66 für Weizen, Reis und Mais; R2 = 0.32 für Soja), und räumliche Ertragsmuster entsprechen weitgehend der beobachteten Verteilung von Feldfrüchten und subnationalen Statistiken. Vor der Modellierung landwirtschaftlicher N2O-Emissionen mit dem Daycent-Modell stand eine statistische Analyse von N2O-und NO-Emissionsmessungen aus natürlichen und landwirtschaftlichen Ökosystemen. Die als signifikant identifizierten Parameter für N2O (Düngemenge, Bodenkohlenstoffgehalt, Boden-pH, Textur, Feldfrucht, Düngersorte) und NO (Düngemenge, Bodenstickstoffgehalt, Klima) entsprechen weitgehend den Ergebnissen einer früheren Analyse. Für Emissionen aus Böden unter natürlicher Vegetation, für die es bislang keine solche statistische Untersuchung gab, haben Bodenkohlenstoffgehalt, Boden-pH, Lagerungsdichte, Drainierung und Vegetationstyp einen signifikanten Einfluss auf die N2O-Emissionen, während NO-Emissionen signifikant von Bodenkohlenstoffgehalt und Vegetationstyp abhängen. Basierend auf den daraus entwickelten statistischen Modellen betragen die globalen Emissionen aus Ackerböden 3.3 Tg N/y für N2O, und 1.4 Tg N/y für NO. Solche statistischen Modelle sind nützlich, um Abschätzungen und Unsicherheitsbereiche von N2O- und NO-Emissionen basierend auf einer Vielzahl von Messungen zu berechnen. Die Dynamik des Bodenstickstoffs, insbesondere beeinflusst durch Pflanzenwachstum, Klimawandel und Landnutzungsänderung, kann allerdings nur durch die Anwendung von prozessorientierten Modellen berücksichtigt werden. Zur Modellierung von N2O-Emissionen mit dem Daycent-Modell wurde zunächst dessen Spurengasmodul durch eine detailliertere Berechnung von Nitrifikation und Denitrifikation und die Berücksichtigung von Frost-Auftau-Emissionen weiterentwickelt. Diese überarbeitete Modellversion wurde dann an N2O-Emissionsmessungen unter verschiedenen Klimaten und Feldfrüchten getestet. Sowohl die Dynamik als auch die Gesamtsummen der N2O-Emissionen werden befriedigend abgebildet, wobei die Modelleffizienz für monatliche Mittelwerte zwischen 0.1 und 0.66 für die meisten Standorte liegt. Basierend auf der überarbeiteten Modellversion wurden die N2O-Emissionen für die zuvor parametrisierten Feldfrüchte berechnet. Emissionsraten und feldfruchtspezifische Unterschiede stimmen weitgehend mit Literaturangaben überein. Düngemittelinduzierte Emissionen, die momentan vom IPCC mit 1.25 +/- 1% der eingesetzten Düngemenge abgeschätzt werden, reichen von 0.77% (Reis) bis 2.76% (Mais). Die Summe der berechneten Emissionen aus landwirtschaftlichen Böden beträgt für die Mitte der 1990er Jahre 2.1 Tg N2O-N/y, was mit den Abschätzungen aus anderen Studien übereinstimmt.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Our knowledge of the agricultural sustainability of the millennia-old mountain oases in northern Oman is restricted in particular with respect to C and N turnover. A laboratory study was conducted (1) to analyse the effects of rewetting and drying on soil microorganisms after adding different manures, (2) to investigate the effects of mulching or incorporating of these manures, and (3) to evaluate the relationships between C and N mineralisation rates and manure quality indices. During the first 9-day rewetting and drying cycle, i.e. the “mulch” period, the content of extractable organic C decreased by approximately 40% in all four treatments. During the second 9-day rewetting and drying cycle, i.e. the “incorporation” period, this fraction decreased insignificantly in almost all treatments. The control and mature manure treatments form the first pair with a low percentage of total organic C evolved as CO2 (0.3% in 18 days) and a considerable percentage of total N mineralised as NH4 and NO3 (1% in 18 days), the fresh and immature manure treatments form the second pair with a higher amount of total organic C evolved as CO2 (0.5% in 18 days) and no net N mineralisation. During the first 9-day rewetting and drying cycle, the contents of microbial biomass C and biomass N increased by approximately 150% in all four treatments. During the second 9-day rewetting and drying cycle, no further increase was observed in the control and immature manure treatments and a roughly 30% increase in the other two treatments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For millennia oasis agriculture has been the backbone of rural livelihood in the desertic Sultanate of Oman. However, little is known about the functioning of these oasis systems, in particular with respect to the C turnover. The objective was to determine the effects of crop, i.e. alfalfa, wheat and bare fallow on the CO2 evolution rate during an irrigation cycle in relation to changes in soil water content and soil temperature. The gravimetric soil water content decreased from initially 24% to approximately 16% within 7 days after irrigation. The mean CO2 evolution rates increased significantly in the order fallow (27.4 mg C m^−2 h^−1) < wheat (45.5 mg C m^−2 h^−1) < alfalfa (97.5 mg C m^−2 h^−1). It can be calculated from these data that the CO2 evolution rate of the alfalfa root system was nearly four times higher than the corresponding rate in the wheat root system. The decline in CO2 evolution rate, especially during the first 4 days after irrigation, was significantly related to the decline in the gravimetric water content, with r = 0.70. CO2 evolution rate and soil temperature at 5 cm depth were negatively correlated (r = -0.56,n = 261) due to increasing soil temperature with decreasing gravimetric water content.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Five laboratory incubation experiments were carried out to assess the salinity-induced changes in the microbial use of sugarcane filter cake added to soil. The first laboratory experiment was carried out to prove the hypothesis that the lower content of fungal biomass in a saline soil reduces the decomposition of a complex organic substrate in comparison to a non-saline soil under acidic conditions. Three different rates (0.5, 1.0, and 2.0%) of sugarcane filter cake were added to both soils and incubated for 63 days at 30°C. In the saline control soil without amendment, cumulative CO2 production was 70% greater than in the corresponding non-saline control soil, but the formation of inorganic N did not differ between these two soils. However, nitrification was inhibited in the saline soil. The increase in cumulative CO2 production by adding filter cake was similar in both soils, corresponding to 29% of the filter cake C at all three addition rates. Also the increases in microbial biomass C and biomass N were linearly related to the amount of filter cake added, but this increase was slightly higher for both properties in the saline soil. In contrast to microbial biomass, the absolute increase in ergosterol content in the saline soil was on average only half that in the non-saline soil and it showed also strong temporal changes during the incubation: A strong initial increase after adding the filter cake was followed by a rapid decline. The addition of filter cake led to immobilisation of inorganic N in both soils. This immobilisation was not expected, because the total C-to-total N ratio of the filter cake was below 13 and the organic C-to-organic N ratio in the 0.5 M K2SO4 extract of this material was even lower at 9.2. The immobilisation was considerably higher in the saline soil than in the non-saline soil. The N immobilisation capacity of sugarcane filter cake should be considered when this material is applied to arable sites at high rations. The second incubation experiment was carried out to examine the N immobilizing effect of sugarcane filter cake (C/N ratio of 12.4) and to investigate whether mixing it with compost (C/N ratio of 10.5) has any synergistic effects on C and N mineralization after incorporation into the soil. Approximately 19% of the compost C added and 37% of the filter cake C were evolved as CO2, assuming that the amendments had no effects on the decomposition of soil organic C. However, only 28% of the added filter cake was lost according to the total C and d13C values. Filter cake and compost contained initially significant concentrations of inorganic N, which was nearly completely immobilized between day 7 and 14 of the incubation in most cases. After day 14, N re-mineralization occurred at an average rate of 0.73 µg N g-1 soil d-1 in most amendment treatments, paralleling the N mineralization rate of the non-amended control without significant difference. No significant net N mineralization from the amendment N occurred in any of the amendment treatments in comparison to the control. The addition of compost and filter cake resulted in a linear increase in microbial biomass C with increasing amounts of C added. This increase was not affected by differences in substrate quality, especially the three times larger content of K2SO4 extractable organic C in the sugarcane filter cake. In most amendment treatments, microbial biomass C and biomass N increased until the end of the incubation. No synergistic effects could be observed in the mixture treatments of compost and sugarcane filter cake. The third 42-day incubation experiment was conducted to answer the questions whether the decomposition of sugarcane filter cake also result in immobilization of nitrogen in a saline alkaline soil and whether the mixing of sugarcane filter cake with glucose (adjusted to a C/N ratio of 12.5 with (NH4)2SO4) change its decomposition. The relative percentage CO2 evolved increased from 35% of the added C in the pure 0.5% filter cake treatment to 41% in the 0.5% filter cake +0.25% glucose treatment to 48% in the 0.5% filter cake +0.5% glucose treatment. The three different amendment treatments led to immediate increases in microbial biomass C and biomass N within 6 h that persisted only in the pure filter cake treatment until the end of the incubation. The fungal cell-membrane component ergosterol showed initially an over-proportionate increase in relation to microbial biomass C that fully disappeared at the end of the incubation. The cellulase activity showed a 5-fold increase after filter cake addition, which was not further increased by the additional glucose amendment. The cellulase activity showed an exponential decline to values around 4% of the initial value in all treatments. The amount of inorganic N immobilized from day 0 to day 14 increased with increasing amount of C added in comparison to the control treatment. Since day 14, the immobilized N was re-mineralized at rates between 1.31 and 1.51 µg N g-1 soil d-1 in the amendment treatments and was thus more than doubled in comparison with the control treatment. This means that the re-mineralization rate is independent from the actual size of the microbial residues pool and also independent from the size of the soil microbial biomass. Other unknown soil properties seem to form a soil-specific gate for the release of inorganic N. The fourth incubation experiment was carried out with the objective of assessing the effects of salt additions containing different anions (Cl-, SO42-, HCO3-) on the microbial use of sugarcane filter cake and dhancha leaves amended to inoculated sterile quartz sand. In the subsequent fifth experiment, the objective was to assess the effects of inoculum and temperature on the decomposition of sugar cane filter cake. In the fourth experiment, sugarcane filter cake led to significantly lower respiration rates, lower contents of extractable C and N, and lower contents of microbial biomass C and N than dhancha leaves, but to a higher respiratory quotient RQ and to a higher content of the fungal biomarker ergosterol. The RQ was significantly increased after salt addition, when comparing the average of all salinity treatments with the control. Differences in anion composition had no clear effects on the RQ values. In experiment 2, the rise in temperature from 20 to 40°C increased the CO2 production rate by a factor of 1.6, the O2 consumption rate by a factor of 1.9 and the ergosterol content by 60%. In contrast, the contents of microbial biomass N decreased by 60% and the RQ by 13%. The effects of the inoculation with a saline soil were in most cases negative and did not indicate a better adaptation of these organisms to salinity. The general effects of anion composition on microbial biomass and activity indices were small and inconsistent. Only the fraction of 0.5 M K2SO4 extractable C and N in non-fumigated soil was consistently increased in the 1.2 M NaHCO3 treatment of both experiments. In contrast to the small salinity effects, the quality of the substrate has overwhelming effects on microbial biomass and activity indices, especially on the fungal part of the microbial community.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The surge in the urban population evident in most developing countries is a worldwide phenomenon, and often the result of drought, conflicts, poverty and the lack of education opportunities. In parallel with the growth of the cities is the growing need for food which leads to the burgeoning expansion of urban and peri-urban agriculture (UPA). In this context, urban agriculture (UA) contributes significantly to supplying local markets with both vegetable and animal produce. As an income generating activity, UA also contributes to the livelihoods of poor urban dwellers. In order to evaluate the nutrient status of urban soils in relation to garden management, this study assessed nutrient fluxes (inputs and outputs) in gardens on urban Gerif soils on the banks of the River Nile in Khartoum, the capital city of Sudan. To achieve this objective, a preliminary baseline survey was carried out to describe the structure of the existing garden systems. In cooperation with the author of another PhD thesis (Ms. Ishtiag Abdalla), alternative uses of cow dung in brick making kilns in urban Khartoum were assessed; and the socio-economic criteria of the brick kiln owners or agents, economical and plant nutritional value of animal dung and the gaseous emission related to brick making activities were assessed. A total of 40 household heads were interviewed using a semi-structured questionnaire to collect information on demographic, socio-economic and migratory characteristics of the household members, the gardening systems used and the problems encountered in urban gardening. Based on the results of this survey, gardens were divided into three groups: mixed vegetable-fodder gardens, mixed vegetable-subsistence livestock gardens and pure vegetable gardens. The results revealed that UA is the exclusive domain of men, 80% of them non-native to Khartoum. The harvested produce in all gardens was market oriented and represented the main source of income for 83% of the gardeners. Fast growing leafy vegetables such as Jew’s mallow (Corchorous olitorius L.), purslane (Portulaca oleracea L.) and rocket (Eruca sativa Mill.) were the dominant cultivated species. Most of the gardens (95%) were continuously cultivated throughout the year without any fallow period, unless they were flooded. Gardeners were not generally aware of the importance of crop diversity, which may help them overcome the strongly fluctuating market prices for their produce and thereby strengthen the contributions of UA to the overall productivity of the city. To measure nutrient fluxes, four gardens were selected and their nutrients inputs and outputs flows were monitored. In each garden, all plots were monitored for quantification of nutrient inputs and outputs. To determine soil chemical fertility parameters in each of the studied gardens, soil samples were taken from three selected plots at the beginning of the study in October 2007 (gardens L1, L2 and H1) and in April 2008 (garden H2) and at the end of the study period in March 2010. Additional soil sampling occurred in May 2009 to assess changes in the soil nutrient status after the River Nile flood of 2008 had receded. Samples of rain and irrigation water (river and well-water) were analyzed for nitrogen (N), phosphorus (P), potassium (K) and carbon (C) content to determine their nutrient inputs. Catchment traps were installed to quantify the sediment yield from the River Nile flood. To quantify the nutrient inputs of sediments, samples were analyzed for N, P, K and organic carbon (Corg) content, cation exchange capacity (CEC) and the particle size distribution. The total nutrient inputs were calculated by multiplying the sediment nutrient content by total sediment deposits on individual gardens. Nutrient output in the form of harvested yield was quantified at harvest of each crop. Plant samples from each field were dried, and analyzed for their N, P, K and Corg content. Cumulative leaching losses of mineral N and P were estimated in a single plot in garden L1 from December 1st 2008 to July 1st 2009 using 12 ion exchange resins cartridges. Nutrients were extracted and analyzed for nitrate (NO3--N), ammonium (NH4+-N) and phosphate PO4-3-P. Changes in soil nutrient balance were assessed as inputs minus outputs. The results showed that across gardens, soil N and P concentrations increased from 2007 to 2009, while particle size distribution remained unchanged. Sediment loads and their respective contents of N, P and Corg decreased significantly (P < 0.05) from the gardens of the downstream lowlands (L1 and L2) to the gardens of the upstream highlands (H1 and H2). No significant difference was found in K deposits. None of the gardens received organic fertilizers and the only mineral fertilizer applied was urea (46-0-0). This equaled 29, 30, 54, and 67% of total N inputs to gardens L1, L2, H1, and H2, respectively. Sediment deposits of the River Nile floods contributed on average 67, 94, 6 and 42% to the total N, P, K and C inputs in lowland gardens and 33, 86, 4 and 37% of total N, P, K and C inputs in highland gardens. Irrigation water and rainfall contributed substantially to K inputs representing 96, 92, 94 and 96% of total K influxes in garden L1, L2, H1 and H2, respectively. Following the same order, total annual DM yields in the gardens were 26, 18, 16 and 1.8 t ha-1. Annual leaching losses were estimated to be 0.02 kg NH4+-N ha-1 (SE = 0.004), 0.03 kg NO3--N ha-1 (SE = 0.002) and 0.005 kg PO4-3-P ha-1 (SE = 0.0007). Differences between nutrient inputs and outputs indicated negative nutrient balances for P and K and positive balances of N and C for all gardens. The negative balances in P and K call for adoptions of new agricultural techniques such as regular manure additions or mulching which may enhance the soil organic matter status. A quantification of fluxes not measured in our study such as N2-fixation, dry deposition and gaseous emissions of C and N would be necessary to comprehensively assess the sustainability of these intensive gardening systems. The second part of the survey dealt with the brick making kilns. A total of 50 brick kiln owners/or agents were interviewed from July to August 2009, using a semi-structured questionnaire. The data collected included general information such as age, family size, education, land ownership, number of kilns managed and/or owned, number of months that kilns were in operation, quantity of inputs (cow dung and fuel wood) used, prices of inputs and products across the production season. Information related to the share value of the land on which the kilns were built and annual income for urban farmers and annual returns from dung for the animal raisers was also collected. Using descriptive statistics, budget calculation and Gini coefficient, the results indicated that renting the land to brick making kilns yields a 5-fold higher return than the rent for agriculture. Gini coefficient showed that the kiln owners had a more equal income distribution compared to farmers. To estimate emission of greenhouse gases (GHGs) and losses of N, P, K, Corg and DM from cow dung when used in brick making, samples of cow dung (loose and compacted) were collected from different kilns and analyzed for their N, P, K and Corg content. The procedure modified by the Intergovernmental Panel on Climate Change (IPCC, 1994) was used to estimate the gaseous emissions of cow dung and fuel wood. The amount of deforested wood was estimated according to the default values for wood density given by Dixon et al. (1991) and the expansion ratio for branches and small trees given by Brown et al. (1989). The data showed the monetary value of added N and P from cow dung was lower than for mineral fertilizers. Annual consumption of compacted dung (381 t DM) as biomass fuel by far exceeded the consumption of fuel wood (36 t DM). Gaseous emissions from cow dung and fuel wood were dominated by CO2, CO and CH4. Considering that Gerif land in urban Khartoum supports a multifunctional land use system, efficient use of natural resources (forest, dung, land and water) will enhance the sustainability of the UA and brick making activities. Adoption of new kilns with higher energy efficiency will reduce the amount of biomass fuels (cow dung and wood) used the amount of GHGs emitted and the threat to the few remaining forests.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Es ist bekannt, dass die Umsatzdynamik der organischen Substanz von der Bodenbearbeitungsintensität abhängt. Bis jetzt sind nur wenige Daten zum Einfluss der Bearbeitungsintensität und des Zwischenfruchtanbaus auf C-, N-, und P-Dynamik im Ober- (0-5 cm Tiefe) und Unterboden (5-25 cm Tiefe) von Lössböden verfügbar. Hauptziele dieser Arbeit waren die (i) Quantifizierung des Einflusses von verschiedenen langzeitig durchgeführten Bearbeitungssystemen auf labile, intermediäre, und passive C- und N-Pools; (ii) Quantifizierung des Einflusses dieser Systeme auf P-Fraktionen mit unterschiedlicher Verfügbarkeit für die Pflanzenaufnahme; (iii) Quantifizierung des Einflusses des Zwischenfruchtanbaus in Verbindung mit einer unterschiedlichen Einarbeitungstiefe der der Zwischenfrüchte auf mineralisierbares C und N. Die Ergebnisse des 1. und 2. Teilexperiments basieren auf Untersuchungen von 4 Langzeitfeldexperimenten (LFE) in Ost- und Süddeutschland, die zwischen 1990 und 1997 durch das Institut für Zuckerrübenforschung angelegt wurden. Jedes LFE umfasst 3 Bearbeitungssysteme: konventionelle Bearbeitung (CT), reduzierte Bearbeitung (RT) und Direktsaat (NT). Die Ergebnisse des 3. Teilexperiments basieren auf einem Inkubationsexperiment. Entsprechend den Hauptfragestellungen wurden folgende Untersuchungsergebnisse beschrieben: (i) Im Oberboden von NT wurden höhere labile C-Vorräte gefunden (C: 1.76 t ha-1, N: 166 kg ha-1), verglichen mit CT (C: 0.44 t ha-1, N: 52 kg ha-1). Im Gegensatz dazu waren die labile- C-Vorräte höher im Unterboden von CT mit 2.68 t ha-1 verglichen zu NT mit 2 t ha-1 und RT mit 1.87 t ha-1. Die intermediären C-Vorräte betrugen 73-85% der gesamten organischen C-Vorräte, intermediäre N-Vorräte betrugen 70-95% des Gesamt-N im Ober- und Unterboden und waren vielfach größer als die labilen und passiven C- und N-Vorräte. Nur im Oberboden konnte ein Effekt der Bearbeitungsintensität auf die intermediären N-Pools mit höheren Vorräten unter NT als CT festgestellt werden. Die passiven C- und N-Pools waren eng mit den mineralischen Bodeneigenschaften verbunden und unabhängig vom Bearbeitungssystem. Insgesamt hat sich gezeigt, dass 14 bis 22 Jahre durchgängige Direktsaatverfahren nur im Oberboden zu höheren labilen C- und N-Vorräten führen, verglichen zu konventionellen Systemen. Dies lässt eine tiefenabhängige Stärke der Dynamik der organischen Bodensubstanz vermuten. (ii) Die Konzentration des Gesamt-P (Pt) im Oberboden war höher in NT (792 mg kg-1) und ~15% höher als die Pt-Konzentration in CT (691 mg kg 1). Die Abnahme der Pt-Konzentration mit zunehmender Bodentiefe war höher in NT als in CT. Dies gilt auch für die einzelnen P-Fraktionen, ausgenommen der stabilsten P-Fraktion (residual-P). Generell hatte das Bearbeitungssystem nur einen kleinen Einfluss auf die P-Konzentration mit höheren Pt-Konzentrationen in Böden unter NT als CT. Dies resultiert vermutlich aus der flacheren Einarbeitung der Pflanzenreste als in CT. (iii) Im Zwischenfruchtexperiment war der Biomassezuwachs von Senf am höchsten und nimmt in der Reihenfolge ab (oberirdischer Ertrag in t / ha): Senf (7.0 t ha-1) > Phacelia (5.7 t ha-1) > Ölrettich (4.4 t ha-1). Damit war potentiell mineralisierbares C und N am höchsten in Böden mit Senfbewuchs. Kumulative CO2- und N2O-Emissionen während der Inkubation unterschieden sich nicht signifikant zwischen den Zwischenfruchtvarianten und waren unabhängig von der Verteilung der Pflanzenreste im Boden. Die kumulativen ausgewaschenen mineralisierten N (Nmin)-Vorräte waren in den brachliegenden Böden am höchsten. Die Nmin-Vorräte waren 51-72% niedriger in den Varianten mit Zwischenfrucht und Einarbeitung verglichen zur Brache. In den Varianten ohne Einarbeitung waren die Nmin-Vorräte 36-55% niedriger verglichen zur Brache. Dies weißt auf einen deutlichen Beitrag von Zwischenfrüchten zur Reduzierung von Nitrat-Auswaschung zwischen Winter und Frühjahr hin. Insgesamt führte reduzierte Bearbeitung zu einer Sequestrierung von C und N im Boden und der Zwischenfruchtanbau führte zu reduzierten N-Verlusten. Die P-Verfügbarkeit war höher unter Direktsaat verglichen zur konventionellen Bearbeitung. Diese Ergebnisse resultieren aus den höheren Konzentrationen der OS in den reduzierten, als in den konventionellen Systemen. Die Ergebnisse zeigen deutlich das Potential von reduzierter Bearbeitung zur Sequestrierung von intermediärem C und N zur Reduzierung von klimarelevanten Treibhausgasen. Gleichzeitig steigen die Konzentrationen an pflanzenverfügaren P-Gehalten. Zwischenfrüchte führen auch zu einem Anstieg der C- und N-Vorräte im Boden, offensichtlich unabhängig von der Zwischenfruchtart.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Intensification processes in homegardens of the Nuba Mountains, Sudan, raise concerns about strongly positive carbon (C) and nutrient balances which are expected to lead to substantial element losses from these agroecosystems, in particular via soil gaseous emissions. Therefore, this thesis aimed at the quantification of C, nitrogen (N), phosphorus (P) and potassium (K) input and output fluxes with a special focus on soil gaseous losses, and the calculation of respective element balances. A further focus in this thesis was rainfall, a valuable resource for rain-fed agriculture in the Nuba Mountains. To minimize negative consequences of the high variability of rainfall, risk reducing mechanisms were developed by rain-fed farmers that may lose their efficacy in the course of climate change effects predicted for East Africa. Therefore, the second objective of this study was to examine possible changes in rainfall amounts during the last 60 years and to provide reliable risk and probability statements of rainfall-induced events of agricultural importance to rain-fed farmers in the Nuba Mountains. Soil gaseous emissions of C (in form of CO2) and N (in form of NH3 and N2O) of two traditional and two intensified homegardens were determined with a portable dynamic closed chamber system. For C gaseous emission rates reached their peak at the onset of the rainy season (2,325 g CO2-C ha-1 h-1 in an intensified garden type) and for N during the rainy season (16 g NH3-N ha-1 h-1 and 11.3 g N2O-N ha-1 h-1, in a traditional garden type). Data indicated cumulative annual emissions of 5,893 kg CO2-C ha-1, 37 kg NH3-N ha-1, and 16 kg N2O-N ha-1. For the assessment of the long-term productivity of the two types of homegardens and the identification of pathways of substantial element losses, a C and nutrient budget approach was used. In three traditional and three intensified homegardens observation plots were selected. The following variables were quantified on each plot between June and December in 2010: soil amendments, irrigation, biomass removal, symbiotic N2 fixation, C fixation by photosynthesis, atmospheric wet and dry deposition, leaching and soil gaseous emissions. Annual balances for C and nutrients amounted to -21 kg C ha-1, -70 kg N ha-1, 9 kg P ha-1 and -117 kg K ha-1 in intensified homegardens and to -1,722 kg C ha-1, -167 kg N ha-1, -9 kg P ha-1 and -74 kg K ha-1 in traditional homegardens. For the analysis of rainfall data, the INSTAT+ software allowed to aggregate long-term daily rainfall records from the Kadugli and Rashad weather stations into daily, monthly and annual intervals and to calculate rainfall-induced events of agricultural importance. Subsequently, these calculated values and events were checked for possible monotonic trends by Mann-Kendall tests. Over the period from 1970 to 2009, annual rainfall did not change significantly for either station. However, during this period an increase of low rainfall events coinciding with a decline in the number of medium daily rainfall events was observed in Rashad. Furthermore, the availability of daily rainfall data enabled frequency and conditional probability calculations that showed either no statistically significant changes or trends resulting only in minor changes of probabilities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two-third of the terrestrial C is stored in soils, and more than 50% of soil organic C (SOC) is stored in subsoils from 30 – 100 cm. Hence, subsoil is important as a source or sink for CO2 in the global carbon cycle. Especially the stable organic carbon (OC) is stored in subsoil, as several studies have shown that subsoil OC is of a higher average age than topsoil OC. However, there is still a lack of knowledge regarding the mechanisms of C sequestration and C turnover in subsoil. Three main factors are discussed, which possibly reduce carbon turnover rates in subsoil: Resource limitation, changes in the microbial community, and changes in gas conditions. The experiments conducted in this study, which aimed to elucidate the importance of the mentioned factors, focused on two neighbouring arable sites, with depth profiles differing in SOC stocks: One Colluvic Cambisol (Cam) with high SOC contents (8-12 g kg-1) throughout the profile and one Haplic Luvisol (Luv) with low SOC contents (3-4 g kg-1) below 30 cm depth. The first experiment was designed to gain more knowledge regarding the microbial community and its influence on carbon sequestration in subsoil. Soil samples were taken at four different depths on the two sites. Microbial biomass C (MBC) was determined to identify depth gradients in relation to the natural C availability. Bacterial and fungal residues as well as ergosterol were determined to quantify changes in the in the microbial community composition. Multi-substrate-induced-respiration (MSIR) was used to identify shifts in functional diversity of the microbial community. The MSIR revealed that substrate use in subsoil differed significantly from that in topsoil and also differed highly between the two subsoils, indicating a strong influence of resource limitations on microbial substrate use. Amino sugar analysis and the ratio of ergosterol to microbial biomass C showed that fungal dominance decreased with depth. The results clearly demonstrated that microbial parameters changed with depth according to substrate availability. The second experiment was an incubation experiment using subsoil gas conditions with and without the addition of C4 plant residues. Soil samples were taken from topsoil and subsoil of the two sites. SOC losses during the incubation, were not influenced by the subsoil gas conditions. Plant-derived C losses were generally stronger in the Cam (7.5 mg g-1), especially at subsoil gas conditions, than in the Luv (7.0 mg g-1). Subsoil gas conditions had no general effects on microbial measures with and without plant residue addition. However, the contribution of plant-derived MBC to total MBC was significantly reduced at subsoil gas conditions. This lead to the conclusion that subsoil gas conditions alter the metabolism of microorganisms but not the degradation of added plant residues is general. The third experiment was a field experiment carried out for two years. Mesh bags containing original soil material and maize root residues (C4 plant) were buried at three different depths at the two sites. The recovery of the soilbags took place 12, 18, and 24 months after burial. We determined the effects of these treatments on SOC, density fractions, and MBC. The mean residence time for maize-derived C was similar at all depths and both sites (403 d). MBC increased to a similar extent (2.5 fold) from the initial value to maximum value. This increase relied largely on the added maize root residues. However, there were clear differences visible in terms of the substrate use efficiency, which decreased with depth and was lower in the Luv than in the Cam. Hence freshly added plant material is highly accessible to microorganisms in subsoil and therefore equally degraded at both sites and depths, but its metabolic use was determined by the legacy of soil properties. These findings provide strong evidence that resource availability from autochthonous SOM as well as from added plant residues have a strong influence on the microbial community and its use of different substrates. However, under all of the applied conditions there was no evidence that complex substrates, i.e. plant residues, were less degraded in subsoil than in topsoil.