14 resultados para Soil C Content

em Universitätsbibliothek Kassel, Universität Kassel, Germany


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Our knowledge of the agricultural sustainability of the millennia-old mountain oases in northern Oman is restricted in particular with respect to C and N turnover. A laboratory study was conducted (1) to analyse the effects of rewetting and drying on soil microorganisms after adding different manures, (2) to investigate the effects of mulching or incorporating of these manures, and (3) to evaluate the relationships between C and N mineralisation rates and manure quality indices. During the first 9-day rewetting and drying cycle, i.e. the “mulch” period, the content of extractable organic C decreased by approximately 40% in all four treatments. During the second 9-day rewetting and drying cycle, i.e. the “incorporation” period, this fraction decreased insignificantly in almost all treatments. The control and mature manure treatments form the first pair with a low percentage of total organic C evolved as CO2 (0.3% in 18 days) and a considerable percentage of total N mineralised as NH4 and NO3 (1% in 18 days), the fresh and immature manure treatments form the second pair with a higher amount of total organic C evolved as CO2 (0.5% in 18 days) and no net N mineralisation. During the first 9-day rewetting and drying cycle, the contents of microbial biomass C and biomass N increased by approximately 150% in all four treatments. During the second 9-day rewetting and drying cycle, no further increase was observed in the control and immature manure treatments and a roughly 30% increase in the other two treatments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Es ist bekannt, dass die Umsatzdynamik der organischen Substanz von der Bodenbearbeitungsintensität abhängt. Bis jetzt sind nur wenige Daten zum Einfluss der Bearbeitungsintensität und des Zwischenfruchtanbaus auf C-, N-, und P-Dynamik im Ober- (0-5 cm Tiefe) und Unterboden (5-25 cm Tiefe) von Lössböden verfügbar. Hauptziele dieser Arbeit waren die (i) Quantifizierung des Einflusses von verschiedenen langzeitig durchgeführten Bearbeitungssystemen auf labile, intermediäre, und passive C- und N-Pools; (ii) Quantifizierung des Einflusses dieser Systeme auf P-Fraktionen mit unterschiedlicher Verfügbarkeit für die Pflanzenaufnahme; (iii) Quantifizierung des Einflusses des Zwischenfruchtanbaus in Verbindung mit einer unterschiedlichen Einarbeitungstiefe der der Zwischenfrüchte auf mineralisierbares C und N. Die Ergebnisse des 1. und 2. Teilexperiments basieren auf Untersuchungen von 4 Langzeitfeldexperimenten (LFE) in Ost- und Süddeutschland, die zwischen 1990 und 1997 durch das Institut für Zuckerrübenforschung angelegt wurden. Jedes LFE umfasst 3 Bearbeitungssysteme: konventionelle Bearbeitung (CT), reduzierte Bearbeitung (RT) und Direktsaat (NT). Die Ergebnisse des 3. Teilexperiments basieren auf einem Inkubationsexperiment. Entsprechend den Hauptfragestellungen wurden folgende Untersuchungsergebnisse beschrieben: (i) Im Oberboden von NT wurden höhere labile C-Vorräte gefunden (C: 1.76 t ha-1, N: 166 kg ha-1), verglichen mit CT (C: 0.44 t ha-1, N: 52 kg ha-1). Im Gegensatz dazu waren die labile- C-Vorräte höher im Unterboden von CT mit 2.68 t ha-1 verglichen zu NT mit 2 t ha-1 und RT mit 1.87 t ha-1. Die intermediären C-Vorräte betrugen 73-85% der gesamten organischen C-Vorräte, intermediäre N-Vorräte betrugen 70-95% des Gesamt-N im Ober- und Unterboden und waren vielfach größer als die labilen und passiven C- und N-Vorräte. Nur im Oberboden konnte ein Effekt der Bearbeitungsintensität auf die intermediären N-Pools mit höheren Vorräten unter NT als CT festgestellt werden. Die passiven C- und N-Pools waren eng mit den mineralischen Bodeneigenschaften verbunden und unabhängig vom Bearbeitungssystem. Insgesamt hat sich gezeigt, dass 14 bis 22 Jahre durchgängige Direktsaatverfahren nur im Oberboden zu höheren labilen C- und N-Vorräten führen, verglichen zu konventionellen Systemen. Dies lässt eine tiefenabhängige Stärke der Dynamik der organischen Bodensubstanz vermuten. (ii) Die Konzentration des Gesamt-P (Pt) im Oberboden war höher in NT (792 mg kg-1) und ~15% höher als die Pt-Konzentration in CT (691 mg kg 1). Die Abnahme der Pt-Konzentration mit zunehmender Bodentiefe war höher in NT als in CT. Dies gilt auch für die einzelnen P-Fraktionen, ausgenommen der stabilsten P-Fraktion (residual-P). Generell hatte das Bearbeitungssystem nur einen kleinen Einfluss auf die P-Konzentration mit höheren Pt-Konzentrationen in Böden unter NT als CT. Dies resultiert vermutlich aus der flacheren Einarbeitung der Pflanzenreste als in CT. (iii) Im Zwischenfruchtexperiment war der Biomassezuwachs von Senf am höchsten und nimmt in der Reihenfolge ab (oberirdischer Ertrag in t / ha): Senf (7.0 t ha-1) > Phacelia (5.7 t ha-1) > Ölrettich (4.4 t ha-1). Damit war potentiell mineralisierbares C und N am höchsten in Böden mit Senfbewuchs. Kumulative CO2- und N2O-Emissionen während der Inkubation unterschieden sich nicht signifikant zwischen den Zwischenfruchtvarianten und waren unabhängig von der Verteilung der Pflanzenreste im Boden. Die kumulativen ausgewaschenen mineralisierten N (Nmin)-Vorräte waren in den brachliegenden Böden am höchsten. Die Nmin-Vorräte waren 51-72% niedriger in den Varianten mit Zwischenfrucht und Einarbeitung verglichen zur Brache. In den Varianten ohne Einarbeitung waren die Nmin-Vorräte 36-55% niedriger verglichen zur Brache. Dies weißt auf einen deutlichen Beitrag von Zwischenfrüchten zur Reduzierung von Nitrat-Auswaschung zwischen Winter und Frühjahr hin. Insgesamt führte reduzierte Bearbeitung zu einer Sequestrierung von C und N im Boden und der Zwischenfruchtanbau führte zu reduzierten N-Verlusten. Die P-Verfügbarkeit war höher unter Direktsaat verglichen zur konventionellen Bearbeitung. Diese Ergebnisse resultieren aus den höheren Konzentrationen der OS in den reduzierten, als in den konventionellen Systemen. Die Ergebnisse zeigen deutlich das Potential von reduzierter Bearbeitung zur Sequestrierung von intermediärem C und N zur Reduzierung von klimarelevanten Treibhausgasen. Gleichzeitig steigen die Konzentrationen an pflanzenverfügaren P-Gehalten. Zwischenfrüchte führen auch zu einem Anstieg der C- und N-Vorräte im Boden, offensichtlich unabhängig von der Zwischenfruchtart.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Soil organic matter (SOM) vitally impacts all soil functions and plays a key role in the global carbon (C) cycle. More than 70% of the terrestric C stocks that participate in the active C cycle are stored in the soil. Therefore, quantitative knowledge of the rates of C incorporation into SOM fractions of different residence time is crucial to understand and predict the sequestration and stabilization of soil organic carbon (SOC). Consequently, there is a need of fractionation procedures that are capable of isolating functionally SOM fractions, i.e. fractions that are defined by their stability. The literature generally refers to three main mechanisms of SOM stabilization: protection of SOM from decomposition by (i) its structural composition, i.e. recalcitrance, (ii) spatial inaccessibility and/or (iii) interaction with soil minerals and metal ions. One of the difficulties in developing fractionation procedures for the isolation of functional SOM fractions is the marked heterogeneity of the soil environment with its various stabilization mechanisms – often several mechanisms operating simultaneously – in soils and soil horizons of different texture and mineralogy. The overall objective of the present thesis was to evaluate present fractionation techniques and to get a better understanding of the factors of SOM sequestration and stabilization. The first part of this study is attended to the structural composition of SOM. Using 13C cross-polarization magic-angle spinning (CPMAS) nuclear magnetic resonance (NMR) spectroscopy, (i) the effect of land use on SOM composition was investigated and (ii) examined whether SOM composition contributes to the different stability of SOM in density and aggregate fractions. The second part of the present work deals with the mineral-associated SOM fraction. The aim was (iii) to evaluate the suitability of chemical fractionation procedures used in the literature for the isolation of stable SOM pools (stepwise hydrolysis, treatments using oxidizing agents like Na2S2O8, H2O2, and NaOCl as well as demineralization of the residue obtained by the NaOCl treatment using HF (NaOCl+HF)) by pool sizes, 13C and 14C data. Further, (iv) the isolated SOM fractions were compared to the inert organic matter (IOM) pool obtained for the investigated soils using the Rothamsted Carbon Model and isotope data in order to see whether the tested chemical fractionation methods produce SOM fractions capable to represent this pool. Besides chemical fractionation, (v) the suitability of thermal oxidation at different temperatures for obtaining stable SOC pools was evaluated. Finally, (vi) the short-term aggregate dynamics and the factors that impact macroaggregate formation and C stabilization were investigated by means of an incubation study using treatments with and without application of 15N labeled maize straw of different degradability (leaves and coarse roots). All treatments were conducted with and without the addition of fungicide. Two study sites with different soil properties and land managements were chosen for these investigations. The first one, located at Rotthalmünster, is a Stagnic Luvisol (silty loam) under different land use regimes. The Ah horizons of a spruce forest and continuous grassland and the Ap and E horizons of two plots with arable crops (continuous maize and wheat cropping) were examined. The soil of the second study site, located at Halle, is a Haplic Phaeozem (loamy sand) where the Ap horizons of two plots with arable crops (continuous maize and rye cropping) were investigated. Both study sites had a C3-/C4-vegetational change on the maize plot for the purpose of tracing the incorporation of the younger, maize-derived C into different SOM fractions and the calculation of apparent C turnover times of these. The Halle site is located near a train station and industrial areas, which caused a contamination with high amounts of fossil C. The investigation of aggregate and density fractions by 13C CPMAS NMR spectroscopy revealed that density fractionation isolated SOM fractions of different composition. The consumption of a considerable part (10–20%) of the easily available O-alkyl-C and the selective preservation of the more recalcitrant alkyl-C when passing from litter to the different particulate organic matter (POM) fractions suggest that density fractionation was able to isolate SOM fractions with different degrees of decomposition. The spectra of the aggregate fractions resembled those of the mineral-associated SOM fraction obtained by density fractionation and no considerable differences were observed between aggregate size classes. Comparison of plant litter, density and aggregate size fractions from soil under different land use showed that the type of land use markedly influenced the composition of SOM. While SOM of the acid forest soil was characterized by a large content (> 50%) of POM, which contained high amounts of spruce-litter derived alkyl-C, the organic matter in the biologically more active grassland and arable soils was dominated by mineral-associated SOM (> 95%). This SOM fraction comprised greater proportions of aryl- and carbonyl-C and is considered to contain a higher amount of microbially-derived organic substances. Land use can alter both, structure and stability of SOM fractions. All applied chemical treatments induced considerable SOC losses (> 70–95% of mineral-associated SOM) in the investigated soils. The proportion of residual C after chemical fractionation was largest in the arable Ap and E horizons and increased with decreasing C content in the initial SOC after stepwise hydrolysis as well as after the oxidative treatments with H2O2 and Na2S2O8. This can be expected for a functional stable pool of SOM, because it is assumed that the more easily available part of SOC is consumed first if C inputs decrease. All chemical treatments led to a preferential loss of the younger, maize-derived SOC, but this was most pronounced after the treatments with Na2S2O8 and H2O2. After all chemical fractionations, the mean 14C ages of SOC were higher than in the mineral-associated SOM fraction for both study sites and increased in the order: NaOCl < NaOCl+HF ≤ stepwise hydrolysis << H2O2 ≈ Na2S2O8. The results suggest that all treatments were capable of isolating a more stable SOM fraction, but the treatments with H2O2 and Na2S2O8 were the most efficient ones. However, none of the chemical fractionation methods was able to fit the IOM pool calculated using the Rothamsted Carbon Model and isotope data. In the evaluation of thermal oxidation for obtaining stable C fractions, SOC losses increased with temperature from 24–48% (200°C) to 100% (500°C). In the Halle maize Ap horizon, losses of the young, maize-derived C were considerably higher than losses of the older C3-derived C, leading to an increase in the apparent C turnover time from 220 years in mineral-associated SOC to 1158 years after thermal oxidation at 300°C. Most likely, the preferential loss of maize-derived C in the Halle soil was caused by the presence of the high amounts of fossil C mentioned above, which make up a relatively large thermally stable C3-C pool in this soil. This agrees with lower overall SOC losses for the Halle Ap horizon compared to the Rotthalmünster Ap horizon. In the Rotthalmünster soil only slightly more maize-derived than C3-derived SOC was removed by thermal oxidation. Apparent C turnover times increased slightly from 58 years in mineral-associated SOC to 77 years after thermal oxidation at 300°C in the Rotthalmünster Ap and from 151 to 247 years in the Rotthalmünster E horizon. This led to the conclusion that thermal oxidation of SOM was not capable of isolating SOM fractions of considerably higher stability. The incubation experiment showed that macroaggregates develop rapidly after the addition of easily available plant residues. Within the first four weeks of incubation, the maximum aggregation was reached in all treatments without addition of fungicide. The formation of water-stable macroaggregates was related to the size of the microbial biomass pool and its activity. Furthermore, fungi were found to be crucial for the development of soil macroaggregates as the formation of water-stable macroaggregates was significantly delayed in the fungicide treated soils. The C concentration in the obtained aggregate fractions decreased with decreasing aggregate size class, which is in line with the aggregate hierarchy postulated by several authors for soils with SOM as the major binding agent. Macroaggregation involved incorporation of large amounts maize-derived organic matter, but macroaggregates did not play the most important role in the stabilization of maize-derived SOM, because of their relatively low amount (less than 10% of the soil mass). Furthermore, the maize-derived organic matter was quickly incorporated into all aggregate size classes. The microaggregate fraction stored the largest quantities of maize-derived C and N – up to 70% of the residual maize-C and -N were stored in this fraction.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

For millennia oasis agriculture has been the backbone of rural livelihood in the desertic Sultanate of Oman. However, little is known about the functioning of these oasis systems, in particular with respect to the C turnover. The objective was to determine the effects of crop, i.e. alfalfa, wheat and bare fallow on the CO2 evolution rate during an irrigation cycle in relation to changes in soil water content and soil temperature. The gravimetric soil water content decreased from initially 24% to approximately 16% within 7 days after irrigation. The mean CO2 evolution rates increased significantly in the order fallow (27.4 mg C m^−2 h^−1) < wheat (45.5 mg C m^−2 h^−1) < alfalfa (97.5 mg C m^−2 h^−1). It can be calculated from these data that the CO2 evolution rate of the alfalfa root system was nearly four times higher than the corresponding rate in the wheat root system. The decline in CO2 evolution rate, especially during the first 4 days after irrigation, was significantly related to the decline in the gravimetric water content, with r = 0.70. CO2 evolution rate and soil temperature at 5 cm depth were negatively correlated (r = -0.56,n = 261) due to increasing soil temperature with decreasing gravimetric water content.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The surge in the urban population evident in most developing countries is a worldwide phenomenon, and often the result of drought, conflicts, poverty and the lack of education opportunities. In parallel with the growth of the cities is the growing need for food which leads to the burgeoning expansion of urban and peri-urban agriculture (UPA). In this context, urban agriculture (UA) contributes significantly to supplying local markets with both vegetable and animal produce. As an income generating activity, UA also contributes to the livelihoods of poor urban dwellers. In order to evaluate the nutrient status of urban soils in relation to garden management, this study assessed nutrient fluxes (inputs and outputs) in gardens on urban Gerif soils on the banks of the River Nile in Khartoum, the capital city of Sudan. To achieve this objective, a preliminary baseline survey was carried out to describe the structure of the existing garden systems. In cooperation with the author of another PhD thesis (Ms. Ishtiag Abdalla), alternative uses of cow dung in brick making kilns in urban Khartoum were assessed; and the socio-economic criteria of the brick kiln owners or agents, economical and plant nutritional value of animal dung and the gaseous emission related to brick making activities were assessed. A total of 40 household heads were interviewed using a semi-structured questionnaire to collect information on demographic, socio-economic and migratory characteristics of the household members, the gardening systems used and the problems encountered in urban gardening. Based on the results of this survey, gardens were divided into three groups: mixed vegetable-fodder gardens, mixed vegetable-subsistence livestock gardens and pure vegetable gardens. The results revealed that UA is the exclusive domain of men, 80% of them non-native to Khartoum. The harvested produce in all gardens was market oriented and represented the main source of income for 83% of the gardeners. Fast growing leafy vegetables such as Jew’s mallow (Corchorous olitorius L.), purslane (Portulaca oleracea L.) and rocket (Eruca sativa Mill.) were the dominant cultivated species. Most of the gardens (95%) were continuously cultivated throughout the year without any fallow period, unless they were flooded. Gardeners were not generally aware of the importance of crop diversity, which may help them overcome the strongly fluctuating market prices for their produce and thereby strengthen the contributions of UA to the overall productivity of the city. To measure nutrient fluxes, four gardens were selected and their nutrients inputs and outputs flows were monitored. In each garden, all plots were monitored for quantification of nutrient inputs and outputs. To determine soil chemical fertility parameters in each of the studied gardens, soil samples were taken from three selected plots at the beginning of the study in October 2007 (gardens L1, L2 and H1) and in April 2008 (garden H2) and at the end of the study period in March 2010. Additional soil sampling occurred in May 2009 to assess changes in the soil nutrient status after the River Nile flood of 2008 had receded. Samples of rain and irrigation water (river and well-water) were analyzed for nitrogen (N), phosphorus (P), potassium (K) and carbon (C) content to determine their nutrient inputs. Catchment traps were installed to quantify the sediment yield from the River Nile flood. To quantify the nutrient inputs of sediments, samples were analyzed for N, P, K and organic carbon (Corg) content, cation exchange capacity (CEC) and the particle size distribution. The total nutrient inputs were calculated by multiplying the sediment nutrient content by total sediment deposits on individual gardens. Nutrient output in the form of harvested yield was quantified at harvest of each crop. Plant samples from each field were dried, and analyzed for their N, P, K and Corg content. Cumulative leaching losses of mineral N and P were estimated in a single plot in garden L1 from December 1st 2008 to July 1st 2009 using 12 ion exchange resins cartridges. Nutrients were extracted and analyzed for nitrate (NO3--N), ammonium (NH4+-N) and phosphate PO4-3-P. Changes in soil nutrient balance were assessed as inputs minus outputs. The results showed that across gardens, soil N and P concentrations increased from 2007 to 2009, while particle size distribution remained unchanged. Sediment loads and their respective contents of N, P and Corg decreased significantly (P < 0.05) from the gardens of the downstream lowlands (L1 and L2) to the gardens of the upstream highlands (H1 and H2). No significant difference was found in K deposits. None of the gardens received organic fertilizers and the only mineral fertilizer applied was urea (46-0-0). This equaled 29, 30, 54, and 67% of total N inputs to gardens L1, L2, H1, and H2, respectively. Sediment deposits of the River Nile floods contributed on average 67, 94, 6 and 42% to the total N, P, K and C inputs in lowland gardens and 33, 86, 4 and 37% of total N, P, K and C inputs in highland gardens. Irrigation water and rainfall contributed substantially to K inputs representing 96, 92, 94 and 96% of total K influxes in garden L1, L2, H1 and H2, respectively. Following the same order, total annual DM yields in the gardens were 26, 18, 16 and 1.8 t ha-1. Annual leaching losses were estimated to be 0.02 kg NH4+-N ha-1 (SE = 0.004), 0.03 kg NO3--N ha-1 (SE = 0.002) and 0.005 kg PO4-3-P ha-1 (SE = 0.0007). Differences between nutrient inputs and outputs indicated negative nutrient balances for P and K and positive balances of N and C for all gardens. The negative balances in P and K call for adoptions of new agricultural techniques such as regular manure additions or mulching which may enhance the soil organic matter status. A quantification of fluxes not measured in our study such as N2-fixation, dry deposition and gaseous emissions of C and N would be necessary to comprehensively assess the sustainability of these intensive gardening systems. The second part of the survey dealt with the brick making kilns. A total of 50 brick kiln owners/or agents were interviewed from July to August 2009, using a semi-structured questionnaire. The data collected included general information such as age, family size, education, land ownership, number of kilns managed and/or owned, number of months that kilns were in operation, quantity of inputs (cow dung and fuel wood) used, prices of inputs and products across the production season. Information related to the share value of the land on which the kilns were built and annual income for urban farmers and annual returns from dung for the animal raisers was also collected. Using descriptive statistics, budget calculation and Gini coefficient, the results indicated that renting the land to brick making kilns yields a 5-fold higher return than the rent for agriculture. Gini coefficient showed that the kiln owners had a more equal income distribution compared to farmers. To estimate emission of greenhouse gases (GHGs) and losses of N, P, K, Corg and DM from cow dung when used in brick making, samples of cow dung (loose and compacted) were collected from different kilns and analyzed for their N, P, K and Corg content. The procedure modified by the Intergovernmental Panel on Climate Change (IPCC, 1994) was used to estimate the gaseous emissions of cow dung and fuel wood. The amount of deforested wood was estimated according to the default values for wood density given by Dixon et al. (1991) and the expansion ratio for branches and small trees given by Brown et al. (1989). The data showed the monetary value of added N and P from cow dung was lower than for mineral fertilizers. Annual consumption of compacted dung (381 t DM) as biomass fuel by far exceeded the consumption of fuel wood (36 t DM). Gaseous emissions from cow dung and fuel wood were dominated by CO2, CO and CH4. Considering that Gerif land in urban Khartoum supports a multifunctional land use system, efficient use of natural resources (forest, dung, land and water) will enhance the sustainability of the UA and brick making activities. Adoption of new kilns with higher energy efficiency will reduce the amount of biomass fuels (cow dung and wood) used the amount of GHGs emitted and the threat to the few remaining forests.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Little is known about the traditional coffee cultivation systems in Central Aceh, Indonesia, where coffee production is a major source of income for local Gayo people. Based on field observations and farmer interviews, 14 representative agroforestry coffee plantations of different age classes (60-70 years, 30-40 years, and 20 years) as well as seven adjacent grassland and native forest sites were selected for this study, and soil and coffee leaf samples collected for nutrient analysis. Significant differences in soil and coffee leaf parameters were found between former native forest and Sumatran pine (Pinus merkusii) forest as previous land cover indicating the importance of the land use history for today’s coffee cultivation. Soil pH as well as exchangeable Na and Ca concentrations were significantly lower on coffee plantations compared to grassland and forest sites. Soil C, N, plant available P, exchangeable K, and Mg concentrations showed no consistent differences between land use groups. Nitrogen (N), phosphorus (P), and potassium (K) concentrations of coffee leaves were in the sufficiency range, whereas zinc (Zn) contents were found to be consistently below the sufficiency threshold and significantly lower in coffee plantations of previous pine forest cover compared to those of previous native forest cover. While the results of this study provided insights into the nutrient status of coffee plantations in Central Aceh, the heterogeneity of site conditions, limited sampling size, and scarcity of reliable data about the land use history and initial soil conditions of sampled sites preclude more definitive conclusions about the sustainability of the studied systems.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The use of renewable primary products as co-substrate or single substrate for biogas production has increased consistently over the last few years. Maize silage is the preferential energy crop used for fermentation due to its high methane (CH4) yield per hectare. Equally, the by-product, namely biogas slurry (BS), is used with increasing frequency as organic fertilizer to return nutrients to the soil and to maintain or increase the organic matter stocks and soil fertility. Studies concerning the application of energy crop-derived BS on the carbon (C) and nitrogen (N) mineralization dynamics are scarce. Thus, this thesis focused on the following objectives: I) The determination of the effects caused by rainfall patterns on the C and N dynamics from two contrasting organic fertilizers, namely BS from maize silage and composted cattle manure (CM), by monitoring emissions of nitrous oxide (N2O), carbon dioxide (CO2) and CH4 as well as leaching losses of C and N. II) The investigation of the impact of differences in soil moisture content after the application of BS and temperature on gaseous emissions (CO2, N2O and CH4) and leaching of C and N compounds. III) A comparison of BS properties obtained from biogas plants with different substrate inputs and operating parameters and their effect on C and N dynamics after application to differently textured soils with varying application rates and water contents. For the objectives I) and II) two experiments (experiment I and II) using undisturbed soil cores of a Haplic Luvisol were carried out. Objective III) was studied on a third experiment (experiment III) with disturbed soil samples. During experiment I three rainfall patterns were implemented including constant irrigation, continuous irrigation with periodic heavy rainfall events, and partial drying with rewetting periods. Biogas slurry and CM were applied at a rate of 100 kg N ha-1. During experiment II constant irrigation and an irrigation pattern with partial drying with rewetting periods were carried out at 13.5°C and 23.5°C. The application of BS took place either directly before a rewetting period or one week after the rewetting period stopped. Experiment III included two soils of different texture which were mixed with ten BS’s originating from ten different biogas plants. Treatments included low, medium and high BS-N application rates and water contents ranging from 50% to 100% of water holding capacity (WHC). Experiment I and II showed that after the application of BS cumulative N2O emissions were 4 times (162 mg N2O-N m-2) higher compared to the application of CM caused by a higher content of mineral N (Nmin) in the form of ammonium (NH4+) in the BS. The cumulative emissions of CO2, however, were on the same level for both fertilizers indicating similar amounts of readily available C after composting and fermentation of organic material. Leaching losses occurred predominantly in the mineral form of nitrate (NO3-) and were higher in BS amended soils (9 mg NO3--N m-2) compared to CM amended soils (5 mg NO3--N m-2). The rainfall pattern in experiment I and II merely affected the temporal production of C and N emissions resulting in reduced CO2 and enhanced N2O emissions during stronger irrigation events, but showed no effect on the cumulative emissions. Overall, a significant increase of CH4 consumption under inconstant irrigation was found. The time of fertilization had no effect on the overall C and N dynamics. Increasing temperature from 13.5°C to 23.5°C enhanced the CO2 and N2O emissions by a factor of 1.7 and 3.7, respectively. Due to the increased microbial activity with increasing temperature soil respiration was enhanced. This led to decreasing oxygen (O2) contents which in turn promoted denitrification in soil due to the extension of anaerobic microsites. Leaching losses of NO3- were also significantly affected by increasing temperature whereas the consumption of CH4 was not affected. The third experiment showed that the input materials of biogas plants affected the properties of the resulting BS. In particular the contents of DM and NH4+ were determined by the amount of added plant biomass and excrement-based biomass, respectively. Correlations between BS properties and CO2 or N2O emissions were not detected. Solely the ammonia (NH3) emissions showed a positive correlation with NH4+ content in BS as well as a negative correlation with the total C (Ct) content. The BS-N application rates affected the relative CO2 emissions (% of C supplied with BS) when applied to silty soil as well as the relative N2O emissions (% of N supplied with BS) when applied to sandy soil. The impacts on the C and N dynamics induced by BS application were exceeded by the differences induced by soil texture. Presumably, due to the higher clay content in silty soils, organic matter was stabilized by organo-mineral interactions and NH4+ was adsorbed at the cation exchange sites. Different water contents induced highest CO2 emissions and therefore optimal conditions for microbial activity at 75% of WHC in both soils. Cumulative nitrification was also highest at 75% and 50% of WHC whereas the relative N2O emissions increased with water content and showed higher N2O losses in sandy soils. In summary it can be stated that the findings of the present thesis confirmed the high fertilizer value of BS’s, caused by high concentrations of NH4+ and labile organic compounds such as readily available carbon. These attributes of BS’s are to a great extent independent of the input materials of biogas plants. However, considerably gaseous and leaching losses of N may occur especially at high moisture contents. The emissions of N2O after field application corresponded with those of animal slurries.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Sultanate of Oman is located on the south-eastern coast of the Arabian Peninsula, which lies on the south-western tip of the Asian continent. The strategic geographical locations of the Sultanate with its many maritime ports distributed on the Indian Ocean have historically made it one of the Arabian Peninsula leaders in the international maritime trade sector. Intensive trading relationships over long time periods have contributed to the high plant diversity seen in Oman where agricultural production depends entirely on irrigation from groundwater sources. As a consequence of the expansion of the irrigated area, groundwater depletion has increased, leading to the intrusion of seawater into freshwater aquifers. This phenomenon has caused water and soil salinity problems in large parts of the Al-Batinah governorate of Oman and threatens cultivated crops, including banana (Musa spp.). According to the Ministry of Agriculture and Fisheries, the majority of South Al-Batinah farms are affected by salinity (ECe > 4 dS m-1). As no alternative farmland is available, the reclamation of salt-affected soils using simple cultural practices is of paramount importance, but in Oman little scientific research has been conducted to develop such methods of reclamation. This doctoral study was initiated to help filling this research gap, particularly for bananas. A literature review of the banana cultivation history revealed that the banana germplasm on the Arabian Peninsula is probably introduced from Indonesia and India via maritime routes across the Indian Ocean and the Red Sea. In a second part of this dissertation, two experiments are described. A laboratory trial conducted at the University of Kassel, in Witzenhausen, Germany from June to July 2010. This incubation experiment was done to explore how C and N mineralization of composted dairy manure and date palm straw differed in alkaline non-saline and saline soils. Each soil was amended with four organic fertilizers: 1) composted dairy manure, 2) manure + 10% date palm straw, 3) manure + 30% date palm straw or 4) date palm straw alone, in addition to un-amended soils as control. The results showed that the saline soil had a lower soil organic C content and microbial biomass C than the non-saline soil. This led to lower mineralization rates of manure and date palm straw in the saline soil. In the non-saline soil, the application of manure and straw resulted in significant increases of CO2 emissions, equivalent to 2.5 and 30% of the added C, respectively. In the non-amended control treatment of the saline soil, the sum of CO2-C reached only 55% of the soil organic C in comparison with the non-saline soil. In which 66% of the added manure and 75% of the added straw were emitted, assuming that no interactions occurred between soil organic C, manure C and straw C during microbial decomposition. The application of straw always led to a net N immobilization compared to the control. Salinity had no specific effect on N mineralization as indicated by the CO2-C to Nmin ratio of soil organic matter and manure. However, N immobilization was markedly stronger in the saline soil. Date palm straw strongly promoted saprotrophic fungi in contrast to manure and the combined application of manure and date palm straw had synergistic positive effects on soil microorganisms. In the last week of incubation, net-N mineralization was observed in nearly all treatments. The strongest increase in microbial biomass C was observed in the manure + straw treatment. In both soils, manure had no effect on the fungi-specific membrane component ergosterol. In contrast, the application of straw resulted in strong increases of the ergosterol content. A field experiment was conducted on two adjacent fields at the Agricultural Research Station, Rumais (23°41’15” N, 57°59’1” E) in the South of Al-Batinah Plain in Oman from October 2007 to July 2009. In this experiment, the effects of 24 soil and fertilizer treatments on the growth and productivity of Musa AAA cv. 'Malindi' were evaluated. The treatments consisted of two soil types (saline and amended non-saline), two fertilizer application methods (mixed and ring applied), six fertilizer amendments (1: fresh dairy manure, 2: composted dairy manure, 3: composted dairy manure and 10% date palm straw, 4: composted dairy manure and 30% date palm straw, 5: only NPK, and 6: NPK and micronutrients). Sandy loam soil was imported from another part of Oman to amended the soil in the planting holes and create non-saline conditions in the root-zone. The results indicate that replacing the saline soil in the root zone by non-saline soil improved plant growth and yield more than fertilizer amendments or application methods. Particularly those plants on amended soil where NPK was applied using the ring method and which received micronutrients grew significantly faster to harvest (339 days), had a higher average bunch weight (9.5 kg/bunch) and were consequently more productive (10.6 tonnes/hectare/cycle) compared to the other treatments.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Landwirtschaft spielt eine zentrale Rolle im Erdsystem. Sie trägt durch die Emission von CO2, CH4 und N2O zum Treibhauseffekt bei, kann Bodendegradation und Eutrophierung verursachen, regionale Wasserkreisläufe verändern und wird außerdem stark vom Klimawandel betroffen sein. Da all diese Prozesse durch die zugrunde liegenden Nährstoff- und Wasserflüsse eng miteinander verknüpft sind, sollten sie in einem konsistenten Modellansatz betrachtet werden. Dennoch haben Datenmangel und ungenügendes Prozessverständnis dies bis vor kurzem auf der globalen Skala verhindert. In dieser Arbeit wird die erste Version eines solchen konsistenten globalen Modellansatzes präsentiert, wobei der Schwerpunkt auf der Simulation landwirtschaftlicher Erträge und den resultierenden N2O-Emissionen liegt. Der Grund für diese Schwerpunktsetzung liegt darin, dass die korrekte Abbildung des Pflanzenwachstums eine essentielle Voraussetzung für die Simulation aller anderen Prozesse ist. Des weiteren sind aktuelle und potentielle landwirtschaftliche Erträge wichtige treibende Kräfte für Landnutzungsänderungen und werden stark vom Klimawandel betroffen sein. Den zweiten Schwerpunkt bildet die Abschätzung landwirtschaftlicher N2O-Emissionen, da bislang kein prozessbasiertes N2O-Modell auf der globalen Skala eingesetzt wurde. Als Grundlage für die globale Modellierung wurde das bestehende Agrarökosystemmodell Daycent gewählt. Neben der Schaffung der Simulationsumgebung wurden zunächst die benötigten globalen Datensätze für Bodenparameter, Klima und landwirtschaftliche Bewirtschaftung zusammengestellt. Da für Pflanzzeitpunkte bislang keine globale Datenbasis zur Verfügung steht, und diese sich mit dem Klimawandel ändern werden, wurde eine Routine zur Berechnung von Pflanzzeitpunkten entwickelt. Die Ergebnisse zeigen eine gute Übereinstimmung mit Anbaukalendern der FAO, die für einige Feldfrüchte und Länder verfügbar sind. Danach wurde das Daycent-Modell für die Ertragsberechnung von Weizen, Reis, Mais, Soja, Hirse, Hülsenfrüchten, Kartoffel, Cassava und Baumwolle parametrisiert und kalibriert. Die Simulationsergebnisse zeigen, dass Daycent die wichtigsten Klima-, Boden- und Bewirtschaftungseffekte auf die Ertragsbildung korrekt abbildet. Berechnete Länderdurchschnitte stimmen gut mit Daten der FAO überein (R2 = 0.66 für Weizen, Reis und Mais; R2 = 0.32 für Soja), und räumliche Ertragsmuster entsprechen weitgehend der beobachteten Verteilung von Feldfrüchten und subnationalen Statistiken. Vor der Modellierung landwirtschaftlicher N2O-Emissionen mit dem Daycent-Modell stand eine statistische Analyse von N2O-und NO-Emissionsmessungen aus natürlichen und landwirtschaftlichen Ökosystemen. Die als signifikant identifizierten Parameter für N2O (Düngemenge, Bodenkohlenstoffgehalt, Boden-pH, Textur, Feldfrucht, Düngersorte) und NO (Düngemenge, Bodenstickstoffgehalt, Klima) entsprechen weitgehend den Ergebnissen einer früheren Analyse. Für Emissionen aus Böden unter natürlicher Vegetation, für die es bislang keine solche statistische Untersuchung gab, haben Bodenkohlenstoffgehalt, Boden-pH, Lagerungsdichte, Drainierung und Vegetationstyp einen signifikanten Einfluss auf die N2O-Emissionen, während NO-Emissionen signifikant von Bodenkohlenstoffgehalt und Vegetationstyp abhängen. Basierend auf den daraus entwickelten statistischen Modellen betragen die globalen Emissionen aus Ackerböden 3.3 Tg N/y für N2O, und 1.4 Tg N/y für NO. Solche statistischen Modelle sind nützlich, um Abschätzungen und Unsicherheitsbereiche von N2O- und NO-Emissionen basierend auf einer Vielzahl von Messungen zu berechnen. Die Dynamik des Bodenstickstoffs, insbesondere beeinflusst durch Pflanzenwachstum, Klimawandel und Landnutzungsänderung, kann allerdings nur durch die Anwendung von prozessorientierten Modellen berücksichtigt werden. Zur Modellierung von N2O-Emissionen mit dem Daycent-Modell wurde zunächst dessen Spurengasmodul durch eine detailliertere Berechnung von Nitrifikation und Denitrifikation und die Berücksichtigung von Frost-Auftau-Emissionen weiterentwickelt. Diese überarbeitete Modellversion wurde dann an N2O-Emissionsmessungen unter verschiedenen Klimaten und Feldfrüchten getestet. Sowohl die Dynamik als auch die Gesamtsummen der N2O-Emissionen werden befriedigend abgebildet, wobei die Modelleffizienz für monatliche Mittelwerte zwischen 0.1 und 0.66 für die meisten Standorte liegt. Basierend auf der überarbeiteten Modellversion wurden die N2O-Emissionen für die zuvor parametrisierten Feldfrüchte berechnet. Emissionsraten und feldfruchtspezifische Unterschiede stimmen weitgehend mit Literaturangaben überein. Düngemittelinduzierte Emissionen, die momentan vom IPCC mit 1.25 +/- 1% der eingesetzten Düngemenge abgeschätzt werden, reichen von 0.77% (Reis) bis 2.76% (Mais). Die Summe der berechneten Emissionen aus landwirtschaftlichen Böden beträgt für die Mitte der 1990er Jahre 2.1 Tg N2O-N/y, was mit den Abschätzungen aus anderen Studien übereinstimmt.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The use of crop residues (CR) has been widely reported as a means of increasing crop yields across West Africa. However, little has been done to compare the magnitude and mechanisms of CR effects systematically in the different agro-ecological zones of the region. To this end, a series of field trials with millet (Pennisetum glaucum L.), sorghum [Sorghum bicolor (L.) Moench], and maize (Zea mays L.) was conducted over a 4-yr period in the Sahelian, Sudanian, and Guinean zones of West Africa. Soils ranged in pH from 4.1 to 5.4 along a rainfall gradient from 510 to 1300 mm. Treatments in the factorial experiments were three CR rates (0,500, and 2000 kg ha^-1)and several levels of phosphorus and nitrogen. The results showed CR-induced total dry matter (TDM) increases in cereals up to 73% for the Sahel compared with a maximum of 16% in the wetter Sudanian and Guinean zones. Residue effects on weakly buffered Sahelian soils were due to improved P availability and to a protection of seedlings against wind erosion. Additional effects of CR mulching on topsoil properties in the Sahel were a decrease in peak temperatures by 4°C and increased water availability. These mulch effects on soil chemical and physical properties strongly decreased from North to South. Likely explanations for this decrease are the decline of dust deposition and wind erosion hazards, the higher soil clay content, lower air temperature, and a faster decomposition rate of mulch material with increasing rainfall from the Sahel to the Sudanian and Guinean zones.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A field experiment was conducted under rainfed conditions in western Sudan at El-Obeid Research Farm and Eldemokeya Forest Reserve, North Kordofan State, during the growing seasons 2004/05 and 2005/06. The main objective was to investigate the soil physical and chemical properties and yield of groundnut (Arachis hypogea), sesame (Sesamum indicum) and roselle (Hibiscus sabdariffa) of an Acacia senegal agroforestry system in comparison with the sole cropping system. Data were recorded for soil physical and chemical properties, soil moisture content, number of pods per plant, fresh weight (kg ha^−1) and crop yield (kg ha^−1). The treatments were arranged in Randomized Complete Block Design (RCBD) and replicated four times. Significant differences (P < 0.05) were obtained for sand and silt content on both sites, while clay content was not significantly different on both sites. The nitrogen (N) and organic carbon were significantly (P < 0.05) higher in the intercropping system in Eldemokeya Forest Reserve compared with sole cropping. Soil organic carbon, N and pH were not significant on El-Obeid site. Yet the level of organic carbon, N, P and pH was higher in the intercropping system. Fresh weight was significantly different on both sites. The highest fresh weight was found in the intercropping system. Dry weights were significantly different for sesame and roselle on both sites, while groundnut was not significantly different. On both sites intercropping systems reduced groundnut, sesame and roselle yields by 26.3, 12 and 20.2%, respectively. The reduction in yield in intercropping plots could be attributed to high tree density, which resulted in water and light competition between trees and the associated crops.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study evaluates the effects of environmental variables on traditional and alternative agroecosystems in three Ejidos (communal lands) in the Chiapas rainforest in Mexico. The tests occurred within two seasonal agricultural cycles. In spring-summer, experiments were performed with the traditional slash, fell and burn (S-F-B) system, no-burn systems and rotating systems with Mucuna deeringiana Bort., and in the autumn-winter agricultural cycle, three no-burn systems were compared to evaluate the effect of alternative sowing with corn (no-burn and topological modification of sowing). The results show a high floristic diversity in the study area (S_S = 4 - 23%), with no significant differences among the systems evaluated. In the first cycle, the analysis of the agronomical variables of the corn indicated better properties in the fallowing systems, with an average yield of 1950 kg ha^‑1, but there was variation related to the number of years left fallow. In the second cycle, the yields were positive for the alternative technology (average yield 3100 kg ha^‑1). The traditional S-F-B systems had reduced pests and increased organic matter and soil phosphorous content. These results are the consequence of fallow periods and adaptation to the environment; thus, this practice in the Chiapas rainforest constitutes an ethnocultural reality, which is unlikely to change in the near future if the agrosystems are managed based on historical principles.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In der vorliegenden Arbeit ging es um die Erarbeitung, Anwendung und Beurteilung von quantitativen Analysenverfahren / Methoden für ein Monitoring von durch Bt-Mais verursachbaren Umwelteffekten im Boden. Die Ausgangsthese besagte, dass sich transgene Maisstreu beim mikrobiellen Abbau anders verhält als konventionelle. Bezugnehmend auf die These wurden zwei Freilandversuche (Freilandmikrokosmenmethode nach Raubuch 1997 über 2 Jahre, Quantifizierung des Maisstreuabbaus mit Hilfe kleiner Bodensäulen über 1 Jahr) und zwei Inkubationsversuche im Labor (INK bei drei verschiedenen Temperaturen über 49 Tage und INK mit verschiedenen landwirtschaftlich genutzten Böden über 49 Tage mit jeweils kontinuierlicher Respirationsratenermittlung nach Isermeyer 1952) sowie Inhaltsstoffbestimmungen der Maisstreu durchgeführt. Für alle Untersuchungen wurde Streu der vier Maissorten Novelis (transgen, Monsanto 810), Nobilis (Isolinie von Novelis), Valmont (transgen, Bt 176, Fa. Syngenta) und Prelude (Isolinie von Valmont) eingesetzt. Nach Beendigung der Laborversuche sowie des Freilandversuches nach der Freilandmikrokosmenmethode wurden mikrobielle Messgrößen wie Adenylategehalt, Ergosterolgehalt, Cmik- und Nmik-Gehalt am Boden-Streu-Gemisch bestimmt. Der Einsatz der Isotopentechnik (Bestimmung von 13C/12C an gemahlenem Boden-Streu-Gemisch bzw. gefriergetrocknetem K2SO4 als Extrakt aus dem Boden-Streu-Gemisch) ermöglichte eine genaue Quantifizierung der abgebauten Maisstreu und brachte dadurch Aufschluss über das Abbauverhalten verschiedener Maissorten. Bezüglich der Ermittlung der mikrobiellen Messgrößen ergab sich für die transgene Sorte Novelis* stets eine durchschnittlich geringere pilzliche Biomasse. Langfristig ergaben sich bei der Kohlenstoff- und Stickstoffdynamik keine Trends hinsichtlich transgener bzw. konventioneller Maisstreu. Sowohl im Freilandversuch nach der Mikrokosmenmethode als auch in den Inkubationsversuchen trat das Phänomen der kurzzeitigen Respirationsratenerhöhung der Mikroorganismen nach Zugabe der transgenen Maissorten auf, welches nicht bei Zugabe der konventionellen Maisstreu auszumachen war. ______________________________

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Five laboratory incubation experiments were carried out to assess the salinity-induced changes in the microbial use of sugarcane filter cake added to soil. The first laboratory experiment was carried out to prove the hypothesis that the lower content of fungal biomass in a saline soil reduces the decomposition of a complex organic substrate in comparison to a non-saline soil under acidic conditions. Three different rates (0.5, 1.0, and 2.0%) of sugarcane filter cake were added to both soils and incubated for 63 days at 30°C. In the saline control soil without amendment, cumulative CO2 production was 70% greater than in the corresponding non-saline control soil, but the formation of inorganic N did not differ between these two soils. However, nitrification was inhibited in the saline soil. The increase in cumulative CO2 production by adding filter cake was similar in both soils, corresponding to 29% of the filter cake C at all three addition rates. Also the increases in microbial biomass C and biomass N were linearly related to the amount of filter cake added, but this increase was slightly higher for both properties in the saline soil. In contrast to microbial biomass, the absolute increase in ergosterol content in the saline soil was on average only half that in the non-saline soil and it showed also strong temporal changes during the incubation: A strong initial increase after adding the filter cake was followed by a rapid decline. The addition of filter cake led to immobilisation of inorganic N in both soils. This immobilisation was not expected, because the total C-to-total N ratio of the filter cake was below 13 and the organic C-to-organic N ratio in the 0.5 M K2SO4 extract of this material was even lower at 9.2. The immobilisation was considerably higher in the saline soil than in the non-saline soil. The N immobilisation capacity of sugarcane filter cake should be considered when this material is applied to arable sites at high rations. The second incubation experiment was carried out to examine the N immobilizing effect of sugarcane filter cake (C/N ratio of 12.4) and to investigate whether mixing it with compost (C/N ratio of 10.5) has any synergistic effects on C and N mineralization after incorporation into the soil. Approximately 19% of the compost C added and 37% of the filter cake C were evolved as CO2, assuming that the amendments had no effects on the decomposition of soil organic C. However, only 28% of the added filter cake was lost according to the total C and d13C values. Filter cake and compost contained initially significant concentrations of inorganic N, which was nearly completely immobilized between day 7 and 14 of the incubation in most cases. After day 14, N re-mineralization occurred at an average rate of 0.73 µg N g-1 soil d-1 in most amendment treatments, paralleling the N mineralization rate of the non-amended control without significant difference. No significant net N mineralization from the amendment N occurred in any of the amendment treatments in comparison to the control. The addition of compost and filter cake resulted in a linear increase in microbial biomass C with increasing amounts of C added. This increase was not affected by differences in substrate quality, especially the three times larger content of K2SO4 extractable organic C in the sugarcane filter cake. In most amendment treatments, microbial biomass C and biomass N increased until the end of the incubation. No synergistic effects could be observed in the mixture treatments of compost and sugarcane filter cake. The third 42-day incubation experiment was conducted to answer the questions whether the decomposition of sugarcane filter cake also result in immobilization of nitrogen in a saline alkaline soil and whether the mixing of sugarcane filter cake with glucose (adjusted to a C/N ratio of 12.5 with (NH4)2SO4) change its decomposition. The relative percentage CO2 evolved increased from 35% of the added C in the pure 0.5% filter cake treatment to 41% in the 0.5% filter cake +0.25% glucose treatment to 48% in the 0.5% filter cake +0.5% glucose treatment. The three different amendment treatments led to immediate increases in microbial biomass C and biomass N within 6 h that persisted only in the pure filter cake treatment until the end of the incubation. The fungal cell-membrane component ergosterol showed initially an over-proportionate increase in relation to microbial biomass C that fully disappeared at the end of the incubation. The cellulase activity showed a 5-fold increase after filter cake addition, which was not further increased by the additional glucose amendment. The cellulase activity showed an exponential decline to values around 4% of the initial value in all treatments. The amount of inorganic N immobilized from day 0 to day 14 increased with increasing amount of C added in comparison to the control treatment. Since day 14, the immobilized N was re-mineralized at rates between 1.31 and 1.51 µg N g-1 soil d-1 in the amendment treatments and was thus more than doubled in comparison with the control treatment. This means that the re-mineralization rate is independent from the actual size of the microbial residues pool and also independent from the size of the soil microbial biomass. Other unknown soil properties seem to form a soil-specific gate for the release of inorganic N. The fourth incubation experiment was carried out with the objective of assessing the effects of salt additions containing different anions (Cl-, SO42-, HCO3-) on the microbial use of sugarcane filter cake and dhancha leaves amended to inoculated sterile quartz sand. In the subsequent fifth experiment, the objective was to assess the effects of inoculum and temperature on the decomposition of sugar cane filter cake. In the fourth experiment, sugarcane filter cake led to significantly lower respiration rates, lower contents of extractable C and N, and lower contents of microbial biomass C and N than dhancha leaves, but to a higher respiratory quotient RQ and to a higher content of the fungal biomarker ergosterol. The RQ was significantly increased after salt addition, when comparing the average of all salinity treatments with the control. Differences in anion composition had no clear effects on the RQ values. In experiment 2, the rise in temperature from 20 to 40°C increased the CO2 production rate by a factor of 1.6, the O2 consumption rate by a factor of 1.9 and the ergosterol content by 60%. In contrast, the contents of microbial biomass N decreased by 60% and the RQ by 13%. The effects of the inoculation with a saline soil were in most cases negative and did not indicate a better adaptation of these organisms to salinity. The general effects of anion composition on microbial biomass and activity indices were small and inconsistent. Only the fraction of 0.5 M K2SO4 extractable C and N in non-fumigated soil was consistently increased in the 1.2 M NaHCO3 treatment of both experiments. In contrast to the small salinity effects, the quality of the substrate has overwhelming effects on microbial biomass and activity indices, especially on the fungal part of the microbial community.