3 resultados para Software radio architecture
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
Software Defined Radio (SDR) hardware platforms use parallel architectures. Current concepts of developing applications (such as WLAN) for these platforms are complex, because developers describe an application with hardware-specifics that are relevant to parallelism such as mapping and scheduling. To reduce this complexity, we have developed a new programming approach for SDR applications, called Virtual Radio Engine (VRE). VRE defines a language for describing applications, and a tool chain that consists of a compiler kernel and other tools (such as a code generator) to generate executables. The thesis presents this concept, as well as describes the language and the compiler kernel that have been developed by the author. The language is hardware-independent, i.e., developers describe tasks and dependencies between them. The compiler kernel performs automatic parallelization, i.e., it is capable of transforming a hardware-independent program into a hardware-specific program by solving hardware-specifics, in particular mapping, scheduling and synchronizations. Thus, VRE simplifies programming tasks as developers do not solve hardware-specifics manually.
Resumo:
DIADEM, created by THOMSON-CSF, is a methodology for specifying and developing user interfaces. It improves productivity of the interface development process as well as quality of the interface. The method provides support to user interface development in three aspects. (1) DIADEM defines roles of people involved and their tasks and organises the sequence of activities. (2) It provides graphical formalisms supporting information exchange between people. (3) It offers a basic set of rules for optimum human-machine interfaces. The use of DIADEM in three areas (process control, sales support, and multimedia presentation) was observed and evaluated by our laboratory in the European project DIAMANTA (ESPRIT P20507). The method provides an open procedure that leaves room for adaptation to a specific application and environment. This paper gives an overview of DIADEM and shows how to extend formalisms for developing multimedia interfaces.
Resumo:
Background: The most common application of imputation is to infer genotypes of a high-density panel of markers on animals that are genotyped for a low-density panel. However, the increase in accuracy of genomic predictions resulting from an increase in the number of markers tends to reach a plateau beyond a certain density. Another application of imputation is to increase the size of the training set with un-genotyped animals. This strategy can be particularly successful when a set of closely related individuals are genotyped. ----- Methods: Imputation on completely un-genotyped dams was performed using known genotypes from the sire of each dam, one offspring and the offspring’s sire. Two methods were applied based on either allele or haplotype frequencies to infer genotypes at ambiguous loci. Results of these methods and of two available software packages were compared. Quality of imputation under different population structures was assessed. The impact of using imputed dams to enlarge training sets on the accuracy of genomic predictions was evaluated for different populations, heritabilities and sizes of training sets. ----- Results: Imputation accuracy ranged from 0.52 to 0.93 depending on the population structure and the method used. The method that used allele frequencies performed better than the method based on haplotype frequencies. Accuracy of imputation was higher for populations with higher levels of linkage disequilibrium and with larger proportions of markers with more extreme allele frequencies. Inclusion of imputed dams in the training set increased the accuracy of genomic predictions. Gains in accuracy ranged from close to zero to 37.14%, depending on the simulated scenario. Generally, the larger the accuracy already obtained with the genotyped training set, the lower the increase in accuracy achieved by adding imputed dams. ----- Conclusions: Whenever a reference population resembling the family configuration considered here is available, imputation can be used to achieve an extra increase in accuracy of genomic predictions by enlarging the training set with completely un-genotyped dams. This strategy was shown to be particularly useful for populations with lower levels of linkage disequilibrium, for genomic selection on traits with low heritability, and for species or breeds for which the size of the reference population is limited.