5 resultados para Slusser, Jean Paul, 1886-
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
X-ray transition energies for two-muonic atoms are calculated. The basis are relativistic self-consistent-field calculations including the corrections normally known in muonic atoms plus the vacuum polarization, magnetic interaction and retardation in the \mu-\mu-interaction, the specific mass correction and the configuration interaction.
Resumo:
In contradiction to the prediction of the Periodic Table but in agreement with earlier suggestions by Brewer and Mann, the ground state configuration of atomic Lawrencium (Z = 103) will not be 7s^2 6d^2 D_3/2 but 7s^2 7p ^2p_1/2. The reason for this deviation from normal trends across the Periodic Table are strong relativistic effects on the outermost 7P_l/2 orbital. Multicontiguration Dirac-Fock calculations are reported for Lawrencium and analogous lighter atoms. These calculations include contributions from magnetic and retardation interactions and an estimation of quantum electrodynamic corrections.
Resumo:
The ground state (J = 0) electronic correlation energy of the 4-electron Be-sequence is calculated in the Multi-Configuration Dirac-Fock approximation for Z = 4-20. The 4 electrons were distributed over the configurations arising from the 1s, 2s, 2p, 3s, 3p and 3d orbitals. Theoretical values obtained here are in good agreement with experimental correlation energies.
Resumo:
The comparison between the experimental binding energies for the K, L, and M electrons for fermium and the results of our Dirac-Fock calculation, taking into account all tractable corrections, leads to agreement within about 20 eV. This shows that the present method of calculation is an adequate description of this problem and that nonlinear electrodynamical effects will not be present in nature or will be smaller than 1% compared to the values recently proposed. It is found that the energies of electronic transitions can now be used to estimate the nuclear radius.
Resumo:
Urban authorities in Europe are confronted with increasing demands by urban dwellers for allotment gardens, but vacant urban soil tends to be scarce and/or polluted by past industrial activities. A possible solution for local authorities could therefore be to promote rooftop gardening. However little technical information exists on certain forms of rooftop urban agriculture, called Z-Farming. In 2012, a pilot experiment was run in Paris (France). Simple and cheap systems of rooftop gardening were tested on a rooftop using as crop substrates only local urban organic waste so as to contribute to the urban metabolism. Production levels and heavy metal contents in cropping substrates and edible vegetables were measured. Available results show (i) high levels of crop production with limited inputs compared to land professional gardening, (ii) low levels of heavy metal pollutants in the edible parts of the crops, especially for Cd and Pb with respect to EU norms for vegetables and (iii) positive influence on yields on organizing the substrate in layers and enhancing the biological activity through earthworm inoculation. These encouraging results allow us to consider that rooftop gardening is feasible and seem to have a great potential to improve urban resiliency. It will nevertheless be necessary to identify more precisely the types of roof that can be used and to assess more fully the generic result of the low level of pollution, as well as the global sustainability of these cropping systems.