1 resultado para Simulation platform
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
Die Miniaturisierung von konventioneller Labor- und Analysetechnik nimmt eine zentrale Rolle im Bereich der allgemeinen Lebenswissenschaften und medizinischen Diagnostik ein. Neuartige und preiswerte Technologieplattformen wie Lab-on-a-Chip (LOC) oder Mikrototalanalysesysteme (µTAS) versprechen insbesondere im Bereich der Individualmedizin einen hohen gesellschaftlichen Nutzen zur frühzeitigen und nichtinvasiven Diagnose krankheitsspezifischer Indikatoren. Durch den patientennahen Einsatz preiswerter und verlässlicher Mikrochips auf Basis hoher Qualitätsstandards entfallen kostspielige und zeitintensive Zentrallaboranalysen, was gleichzeitig Chancen für den globalen Einsatz - speziell in Schwellen- und Entwicklungsländern - bietet. Die technischen Herausforderungen bei der Realisierung moderner LOC-Systeme sind in der kontrollierten und verlässlichen Handhabung kleinster Flüssigkeitsmengen sowie deren diagnostischem Nachweis begründet. In diesem Kontext wird der erfolgreichen Integration eines fernsteuerbaren Transports von biokompatiblen, magnetischen Mikro- und Nanopartikeln eine Schlüsselrolle zugesprochen. Die Ursache hierfür liegt in der vielfältigen Einsetzbarkeit, die durch die einzigartigen Materialeigenschaften begründet sind. Diese reichen von der beschleunigten, aktiven Durchmischung mikrofluidischer Substanzvolumina über die Steigerung der molekularen Interaktionsrate in Biosensoren bis hin zur Isolation und Aufreinigung von krankheitsspezifischen Indikatoren. In der Literatur beschriebene Ansätze basieren auf der dynamischen Transformation eines makroskopischen, zeitabhängigen externen Magnetfelds in eine mikroskopisch veränderliche potentielle Energielandschaft oberhalb magnetisch strukturierter Substrate, woraus eine gerichtete und fernsteuerbare Partikelbewegung resultiert. Zentrale Kriterien, wie die theoretische Modellierung und experimentelle Charakterisierung der magnetischen Feldlandschaft in räumlicher Nähe zur Oberfläche der strukturierten Substrate sowie die theoretische Beschreibung der Durchmischungseffekte, wurden jedoch bislang nicht näher beleuchtet, obwohl diese essentiell für ein detailliertes Verständnis der zu Grunde liegenden Mechanismen und folglich für einen Markteintritt zukünftiger Geräte sind. Im Rahmen der vorgestellten Arbeit wurde daher ein neuartiger Ansatz zur erfolgreichen Integration eines Konzepts zum fernsteuerbaren Transport magnetischer Partikel zur Anwendung in modernen LOC-Systemen unter Verwendung von magnetisch strukturierten Exchange-Bias (EB) Dünnschichtsystemen verfolgt. Die Ergebnisse zeigen, dass sich das Verfahren der ionenbe-schussinduzierten magnetischen Strukturierung (IBMP) von EB-Systemen zur Herstellung von maßgeschneiderten magnetischen Feldlandschaften (MFL) oberhalb der Substratoberfläche, deren Stärke und räumlicher Verlauf auf Nano- und Mikrometerlängenskalen gezielt über die Veränderung der Materialparameter des EB-Systems via IBMP eingestellt werden kann, eignet. Im Zuge dessen wurden erstmals moderne, experimentelle Verfahrenstechniken (Raster-Hall-Sonden-Mikroskopie und rastermagnetoresistive Mikroskopie) in Kombination mit einem eigens entwickelten theoretischen Modell eingesetzt, um eine Abbildung der MFL in unterschiedlichen Abstandsbereichen zur Substratoberfläche zu realisieren. Basierend auf der quantitativen Kenntnis der MFL wurde ein neuartiges Konzept zum fernsteuerbaren Transport magnetischer Partikel entwickelt, bei dem Partikelgeschwindigkeiten im Bereich von 100 µm/s unter Verwendung von externen Magnetfeldstärken im Bereich weniger Millitesla erzielt werden können, ohne den magnetischen Zustand des Substrats zu modifizieren. Wie aus den Untersuchungen hervorgeht, können zudem die Stärke des externen Magnetfelds, die Stärke und der Gradient der MFL, das magnetfeldinduzierte magnetische Moment der Partikel sowie die Größe und der künstlich veränderliche Abstand der Partikel zur Substratoberfläche als zentrale Einflussgrößen zur quantitativen Modifikation der Partikelgeschwindigkeit genutzt werden. Abschließend wurde erfolgreich ein numerisches Simulationsmodell entwickelt, das die quantitative Studie der aktiven Durchmischung auf Basis des vorgestellten Partikeltransportkonzepts von theoretischer Seite ermöglicht, um so gezielt die geometrischen Gegebenheiten der mikrofluidischen Kanalstrukturen auf einem LOC-System für spezifische Anwendungen anzupassen.