7 resultados para Short-term scheduling
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
The traditional control of Imperata brasiliensis grasslands used by farmers in the Peruvian Amazon is to burn the grass. The objective of this study was to compare different methods of short-term control. Biological, mechanical, chemical and traditional methods of control were compared. Herbicide spraying and manual weeding have shown to be very effective in reducing above- and below-ground biomass growth in the first 45 days after slashing the grass, with effects persisting in the longer term, but both are expensive methods. Shading seems to be less effective in the short-term, whereas it influences the Imperata growth in the longer term. After one year shading, glyphosate application and weeding significantly reduced aboveground biomass by 94, 67 and 53%; and belowground biomass by 76, 65 and 58%, respectively, compared to control. We also found a significant decrease of Imperata rhizomes in soil during time under shading. Burning has proved to have no significant effect on Imperata growth. The use of shade trees in a kind of agroforestry system could be a suitable method for small farmers to control Imperata grasslands.
Resumo:
The understanding of poverty dynamics is crucial for the design of appropriate poverty reduction strategies. Taking the case of Central Sulawesi, we investigate the determinants of both chronic and transitory poverty using data from 264 randomly selected households interviewed in 2005 and 2007. Regarding the US 1$/day poverty line, the headcount index declined from 19.3% in 2005 to 18.2% in 2007. However, we observed an increasing number of people living on less than US 2$/day expressed in purchasing power parity (PPP). The results of the estimated multinomial logit model applied in this study indicate that a lack of non-agricultural employment opportunities and low endowment of social capital are major determinants of chronic as well as transitory poverty in this province of Indonesia. These results are used to draw policy conclusions with respect to the alleviation of transitory and chronic poverty in Central Sulawesi.
Resumo:
The fertiliser value of human urine has been examined on several crops, yet little is known about its effects on key soil properties of agronomic significance. This study investigated temporal soil salinization potential of human urine fertiliser (HUF). It further looked at combined effects of human urine and wood ash (WA) on soil pH, urine-NH_3 volatilisation, soil electrical conductivity (EC), and basic cation contents of two Acrisols (Adenta and Toje series) from the coastal savannah zone of Ghana. The experiment was a factorial design conducted in the laboratory for 12 weeks. The results indicated an increase in soil pH by 1.2 units for Adenta series and 1 unit for Toje series after one week of HUF application followed by a decline by about 2 pH units for both soil types after twelve weeks. This was attributed to nitrification of ammonium to nitrate leading to acidification. The EC otherwise increased with HUF application creating slightly saline conditions in Toje series and non-saline conditions in Adenta series. When WA was applied with HUF, both soil pH and EC increased. In contrast, the HUF alone slightly salinized Toje series, but both soils remained non-saline whenWA and HUF were applied together. The application ofWA resulted in two-fold increase in Ca, Mg, K, and Na content compared to HUF alone. Hence, WA is a promising amendment of acid soils and could reduce the effect of soluble salts in human urine fertilizer, which is likely to cause soil salinity.
Resumo:
The objective of this study was to report single season effects of wood biochar (char) application coupled with N fertilization on soil chemical properties, aerobic rice growth and grain yield in a clayey Rhodic Ferralsol in the Brazilian Savannah. Char application effected an increase in soil pH, K, Ca, Mg, CEC, Mn and nitrate while decreasing Al content and potential acidity of soils. No distinct effect of char application on grain yield of aerobic rice was observed. We believe that soil properties impacted by char application were inconsequential for rice yields because neither water, low pH, nor the availability of K or P were limiting factors for rice production. Rate of char above 16 Mg ha^(−1) reduced leaf area index and total shoot dry matter by 72 days after sowing. The number of panicles infected by rice blast decreased with increasing char rate. Increased dry matter beyond the remobilization capacity of the crop, and high number of panicles infected by rice blast were the likely cause of the lower grain yield observed when more than 60 kg N ha^(−1) was applied. The optimal rate of N was 46 kg ha^(−1) and resulted in a rice grain yield above 3 Mg ha^(−1).
Resumo:
Die Maßnahmen zur Förderung der Windenergie in Deutschland haben wichtige Anstöße zur technologischen Weiterentwicklung geliefert und die Grundlagen für den enormen Anlagenzubau geschaffen. Die installierte Windleistung hat heute eine beachtliche Größenordnung erreicht und ein weiteres Wachstum in ähnlichen Dimensionen ist auch für die nächsten Jahre zu erwarten. Die aus Wind erzeugte elektrische Leistung deckt bereits heute in einigen Netzbereichen die Netzlast zu Schwachlastzeiten. Dies zeigt, dass die Windenergie ein nicht mehr zu vernachlässigender Faktor in der elektrischen Energieversorgung geworden ist. Im Rahmen der Kraftwerkseinsatzplanung sind Betrag und Verlauf der Windleistung des folgenden Tages mittlerweile zu wichtigen und zugleich schwierig zu bestimmenden Variablen geworden. Starke Schwankungen und falsche Prognosen der Windstromeinspeisung verursachen zusätzlichen Bedarf an Regel- und Ausgleichsleistung durch die Systemführung. Das im Rahmen dieser Arbeit entwickelte Prognosemodell liefert die zu erwartenden Windleistungen an 16 repräsentativen Windparks bzw. Gruppen von Windparks für bis zu 48 Stunden im Voraus. Aufgrund von prognostizierten Wetterdaten des deutschen Wetterdienstes (DWD) werden die Leistungen der einzelnen Windparks mit Hilfe von künstlichen neuronalen Netzen (KNN) berechnet. Diese Methode hat gegenüber physikalischen Verfahren den Vorteil, dass der komplexe Zusammenhang zwischen Wettergeschehen und Windparkleistung nicht aufwendig analysiert und detailliert mathematisch beschrieben werden muss, sondern anhand von Daten aus der Vergangenheit von den KNN gelernt wird. Das Prognosemodell besteht aus zwei Modulen. Mit dem ersten wird, basierend auf den meteorologischen Vorhersagen des DWD, eine Prognose für den Folgetag erstellt. Das zweite Modul bezieht die online gemessenen Leistungsdaten der repräsentativen Windparks mit ein, um die ursprüngliche Folgetagsprognose zu verbessern und eine sehr genaue Kurzzeitprognose für die nächsten drei bis sechs Stunden zu berechnen. Mit den Ergebnissen der Prognosemodule für die repräsentativen Standorte wird dann über ein Transformationsmodell, dem so genannten Online-Modell, die Gesamteinspeisung in einem größeren Gebiet berechnet. Das Prognoseverfahren hat seine besonderen Vorzüge in der Genauigkeit, den geringen Rechenzeiten und den niedrigen Betriebskosten, da durch die Verwendung des bereits implementierten Online-Modells nur eine geringe Anzahl von Vorhersage- und Messstandorten benötigt wird. Das hier vorgestellte Prognosemodell wurde ursprünglich für die E.ON-Netz GmbH entwickelt und optimiert und ist dort seit Juli 2001 im Einsatz. Es lässt sich jedoch auch leicht an andere Gebiete anpassen. Benötigt werden dazu nur die Messdaten der Leistung ausgewählter repräsentativer Windparks sowie die dazu gehörenden Wettervorhersagen, um die KNN entsprechend zu trainieren.
Resumo:
In dieser Arbeit werden verschiedene Computermodelle, Rechenverfahren und Methoden zur Unterstützung bei der Integration großer Windleistungen in die elektrische Energieversorgung entwickelt. Das Rechenmodell zur Simulation der zeitgleich eingespeisten Windenergie erzeugt Summenganglinien von beliebig zusammengestellten Gruppen von Windenergieanlagen, basierend auf gemessenen Wind- und Leistungsdaten der nahen Vergangenheit. Dieses Modell liefert wichtige Basisdaten für die Analyse der Windenergieeinspeisung auch für zukünftige Szenarien. Für die Untersuchung der Auswirkungen von Windenergieeinspeisungen großräumiger Anlagenverbünde im Gigawattbereich werden verschiedene statistische Analysen und anschauliche Darstellungen erarbeitet. Das im Rahmen dieser Arbeit entwickelte Modell zur Berechnung der aktuell eingespeisten Windenergie aus online gemessenen Leistungsdaten repräsentativer Windparks liefert wertvolle Informationen für die Leistungs- und Frequenzregelung der Netzbetreiber. Die zugehörigen Verfahren zur Ermittlung der repräsentativen Standorte und zur Überprüfung der Repräsentativität bilden die Grundlage für eine genaue Abbildung der Windenergieeinspeisung für größere Versorgungsgebiete, basierend auf nur wenigen Leistungsmessungen an Windparks. Ein weiteres wertvolles Werkzeug für die optimale Einbindung der Windenergie in die elektrische Energieversorgung bilden die Prognosemodelle, die die kurz- bis mittelfristig zu erwartende Windenergieeinspeisung ermitteln. In dieser Arbeit werden, aufbauend auf vorangegangenen Forschungsarbeiten, zwei, auf Künstlich Neuronalen Netzen basierende Modelle vorgestellt, die den zeitlichen Verlauf der zu erwarten Windenergie für Netzregionen und Regelzonen mit Hilfe von gemessenen Leistungsdaten oder prognostizierten meteorologischen Parametern zur Verfügung stellen. Die softwaretechnische Zusammenfassung des Modells zur Berechnung der aktuell eingespeisten Windenergie und der Modelle für die Kurzzeit- und Folgetagsprognose bietet eine attraktive Komplettlösung für die Einbindung der Windenergie in die Leitwarten der Netzbetreiber. Die dabei entwickelten Schnittstellen und die modulare Struktur des Programms ermöglichen eine einfache und schnelle Implementierung in beliebige Systemumgebungen. Basierend auf der Leistungsfähigkeit der Online- und Prognosemodelle werden Betriebsführungsstrategien für zu Clustern im Gigawattbereich zusammengefasste Windparks behandelt, die eine nach ökologischen und betriebswirtschaftlichen Gesichtspunkten sowie nach Aspekten der Versorgungssicherheit optimale Einbindung der geplanten Offshore-Windparks ermöglichen sollen.
Resumo:
In dieser Arbeit wurde ein gemischt-ganzzahliges lineares Einsatzoptimierungsmodell für Kraftwerke und Speicher aufgebaut und für die Untersuchung der Energieversorgung Deutschlands im Jahre 2050 gemäß den Leitstudie-Szenarien 2050 A und 2050 C ([Nitsch und Andere, 2012]) verwendet, in denen erneuerbare Energien einen Anteil von über 85 % an der Stromerzeugung haben und die Wind- und Solarenergie starke Schwankungen der durch steuerbare Kraftwerke und Speicher zu deckenden residualen Stromnachfrage (Residuallast) verursachen. In Szenario 2050 A sind 67 TWh Wasserstoff, die elektrolytisch aus erneuerbarem Strom zu erzeugen sind, für den Verkehr vorgesehen. In Szenario 2050 C ist kein Wasserstoff für den Verkehr vorgesehen und die effizientere Elektromobilität hat einen Anteil von 100% am Individualverkehr. Daher wird weniger erneuerbarer Strom zur Erreichung desselben erneuerbaren Anteils im Verkehrssektor benötigt. Da desweiteren Elektrofahrzeuge Lastmanagementpotentiale bieten, weisen die Residuallasten der Szenarien eine unterschiedliche zeitliche Charakteristik und Jahressumme auf. Der Schwerpunkt der Betrachtung lag auf der Ermittlung der Auslastung und Fahrweise des in den Szenarien unterstellten ’Kraftwerks’-parks bestehend aus Kraftwerken zur reinen Stromerzeugung, Kraft-Wärme-Kopplungskraftwerken, die mit Wärmespeichern, elektrischen Heizstäben und Gas-Backupkesseln ausgestattet sind, Stromspeichern und Wärmepumpen, die durch Wärmespeicher zum Lastmanagment eingesetzt werden können. Der Fahrplan dieser Komponenten wurde auf minimale variable Gesamtkosten der Strom- und Wärmeerzeugung über einen Planungshorizont von jeweils vier Tagen hin optimiert. Das Optimierungsproblem wurde mit dem linearen Branch-and-Cut-Solver der software CPLEX gelöst. Mittels sogenannter rollierender Planung wurde durch Zusammensetzen der Planungsergebnisse für überlappende Planungsperioden der Kraftwerks- und Speichereinsatz für die kompletten Szenariojahre erhalten. Es wurde gezeigt, dass der KWK-Anteil an der Wärmelastdeckung gering ist. Dies wurde begründet durch die zeitliche Struktur der Stromresiduallast, die wärmeseitige Dimensionierung der Anlagen und die Tatsache, dass nur eine kurzfristige Speicherung von Wärme vorgesehen war. Die wärmeseitige Dimensionierung der KWK stellte eine Begrenzung des Deckungsanteils dar, da im Winter bei hoher Stromresiduallast nur wenig freie Leistung zur Beladung der Speicher zur Verfügung stand. In den Berechnungen für das Szenario 2050 A und C lag der mittlere Deckungsanteil der KWK an der Wärmenachfrage von ca. 100 TWh_th bei 40 bzw. 60 %, obwohl die Auslegung der KWK einen theoretischen Anteil von über 97 % an der Wärmelastdeckung erlaubt hätte, gäbe es die Beschränkungen durch die Stromseite nicht. Desweiteren wurde die CO2-Vermeidungswirkung der KWK-Wärmespeicher und des Lastmanagements mit Wärmepumpen untersucht. In Szenario 2050 A ergab sich keine signifikante CO2-Vermeidungswirkung der KWK-Wärmespeicher, in Szenario 2050 C hingegen ergab sich eine geringe aber signifikante CO2-Einsparung in Höhe von 1,6 % der Gesamtemissionen der Stromerzeugung und KWK-gebundenen Wärmeversorgung. Das Lastmanagement mit Wärmepumpen vermied Emissionen von 110 Tausend Tonnen CO2 (0,4 % der Gesamtemissionen) in Szenario A und 213 Tausend Tonnen in Szenario C (0,8 % der Gesamtemissionen). Es wurden darüber hinaus Betrachtungen zur Konkurrenz zwischen solarthermischer Nahwärme und KWK bei Einspeisung in dieselben Wärmenetze vorgenommen. Eine weitere Einschränkung der KWK-Erzeugung durch den Einspeisevorrang der Solarthermie wurde festgestellt. Ferner wurde eine untere Grenze von 6,5 bzw. 8,8 TWh_th für die in den Szenarien mindestens benötigte Wasserstoff-Speicherkapazität ermittelt. Die Ergebnisse dieser Arbeit legen nahe, das technisch-ökonomische Potential von Langzeitwärmespeichern für eine bessere Integration von KWK ins System zu ermitteln bzw. generell nach geeigneteren Wärmesektorszenarien zu suchen, da deutlich wurde, dass für die öffentliche Wärmeversorgung die KWK in Kombination mit Kurzzeitwärmespeicherung, Gaskesseln und elektrischen Heizern keine sehr effektive CO2 -Reduktion in den Szenarien erreicht. Es sollte dabei z.B. untersucht werden, ob ein multivalentes System aus KWK, Wärmespeichern und Wärmepumpen eine ökonomisch darstellbare Alternative sein könnte und im Anschluss eine Betrachtung der optimalen Anteile von KWK, Wärmepumpen und Solarthermie im Wärmemarkt vorgenommen werden.