5 resultados para Shade trees
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
The traditional control of Imperata brasiliensis grasslands used by farmers in the Peruvian Amazon is to burn the grass. The objective of this study was to compare different methods of short-term control. Biological, mechanical, chemical and traditional methods of control were compared. Herbicide spraying and manual weeding have shown to be very effective in reducing above- and below-ground biomass growth in the first 45 days after slashing the grass, with effects persisting in the longer term, but both are expensive methods. Shading seems to be less effective in the short-term, whereas it influences the Imperata growth in the longer term. After one year shading, glyphosate application and weeding significantly reduced aboveground biomass by 94, 67 and 53%; and belowground biomass by 76, 65 and 58%, respectively, compared to control. We also found a significant decrease of Imperata rhizomes in soil during time under shading. Burning has proved to have no significant effect on Imperata growth. The use of shade trees in a kind of agroforestry system could be a suitable method for small farmers to control Imperata grasslands.
Resumo:
In Colombia coffee production is facing risks due to an increase in the variability and amount of rainfall, which may alter hydrological cycles and negatively influence yield quality and quantity. Shade trees in coffee plantations, however, are known to produce ecological benefits, such as intercepting rainfall and lowering its velocity, resulting in a reduced net-rainfall and higher water infiltration. In this case study, we measured throughfall and soil hydrological properties in four land use systems in Cauca, Colombia, that differed in stand structural parameters: shaded coffee, unshaded coffee, secondary forest and pasture. We found that throughfall was rather influenced by stand structural characteristics than by rainfall intensity. Lower throughfall was recorded in the shaded coffee compared to the other systems when rain gauges were placed at a distance of 1.0 m to the shade tree. The variability of throughfall was high in the shaded coffee, which was due to different canopy characteristics and irregular arrangements of shade tree species. Shaded coffee and secondary forest resembled each other in soil structural parameters, with an increase in saturated hydraulic conductivity and microporosity, whereas bulk density and macroporosity decreased, compared to the unshaded coffee and pasture. In this context tree-covered systems indicate a stronger resilience towards changing rainfall patterns, especially in mountainous areas where coffee is cultivated.
Resumo:
In recent times, increased emphasis has been placed on diversifying the types of trees to shade cacao (Theobroma cacao L.) and to achieve additional services. Agroforestry systems that include profitable and native timber trees are a viable alternative but it is necessary to understand the growth characteristics of these species under different environmental conditions. Thus, timber tree species selection should be based on plant responses to biotic and abiotic factors. The aims of this study were (1) to evaluate growth rates and leaf area indices of the four commercial timber species: Cordia thaisiana, Cedrela odorata, Swietenia macrophylla and Tabebuia rosea in conjunction with incidence of insect attacks and (2) to compare growth rates of four Venezuelan Criollo cacao cultivars planted under the shade of these four timber species during the first 36 months after establishment. Parameters monitored in timber trees were: survival rates, growth rates expressed as height and diameter at breast height and leaf area index. In the four Cacao cultivars: height and basal diameter. C. thaisiana and C. odorata had the fastest growth and the highest survival rates. Growth rates of timber trees will depend on their susceptibility to insect attacks as well as to total leaf area. All cacao cultivars showed higher growth rates under the shade of C. odorata. Growth rates of timber trees and cacao cultivars suggest that combinations of cacao and timber trees are a feasible agroforestry strategy in Venezuela.
Resumo:
This study was conducted in 2010 in Eastern Nuba Mountains, Sudan to investigate ethnobotanical food and non-food uses of 16 wild edible fruit producing trees. Quantitative and qualitative information was collected from 105 individuals distributed in 7 villages using a semi-structured questionnaire. Also gathering of data was done using a number of rapid rural appraisal techniques, including key informant interviews, group discussion, secondary data sources and direct observations. Data was analysed using fidelity level and informant consensus factor methods to reveal the cultural importance of species and use category. Utilizations for timber products were found of most community importance than food usages, especially during cultivated food abundance. Balanites aegyptiaca, Ziziphus spina-christi and Tamarindus indica fruits were asserted as most preferable over the others and of high marketability in most of the study sites. Harvesting for timber-based utilizations in addition to agricultural expansion and overgrazing were the principal threats to wild edible food producing trees in the area. The on and off prevailing armed conflict in the area make it crucial to conserve wild food trees which usually play a more significant role in securing food supply during emergency times, especially in times of famine and wars. Increasing the awareness of population on importance of wild food trees and securing alternative income sources, other than wood products, is necessary in any rural development programme aiming at securing food and sustaining its resources in the area.
Resumo:
The demand for biomass for bioenergy has increased rapidly in industrialized countries in the recent years. Biogenic energy carriers are known to reduce CO2 emissions. However, the resource-inefficient production of biomass often caused negative impacts on the environment, e.g. biodiversity losses, nitrate leaching, and erosion. The detrimental effects evolved mainly from annual crops. Therefore, the aim of modern bioenergy cropping systems is to combine yield stability and environmental benefits by the establishment of mixed-cropping systems. A particular emphasis is on perennial crops which are perceived as environmentally superior to annual crops. Agroforestry systems represent such mixed perennial cropping systems and consist of a mix of trees and arable crops or grassland within the same area of land. Agroforestry practices vary across the globe and alley cropping is a type of agroforestry system which is well adapted to the temperate zone, with a high degree of mechanization. Trees are planted in rows and crops are planted in the alleyways, which facilitates their management by machinery. This study was conducted to examine a young alley cropping system of willows and two grassland mixtures for bioenergy provision under temperate climate conditions. The first part of the thesis identified possible competition effects between willows and the two grassland mixtures. Since light seemed to be the factor most affecting the yield performance of the understory in temperate agroforestry systems, a biennial in situ artificial shade experiment was established over a separate clover-grass stand to quantify the effects of shade. Data to possible below- and aboveground interactions among willows and the two grassland mixtures and their effects on productivity, sward composition, and quality were monitored along a tree-grassland interface within the alleys. In the second part, productivity of the alley cropping system was examined on a triennial time frame and compared to separate grassland and willow stands as controls. Three different conversion technologies (combustion of hay, integrated generation of solid fuel and biogas from biomass, whole crop digestion) were applied to grassland biomass as feedstock and analyzed for its energetic potential. The energetic potential of willow wood chips was calculated by applying combustion as conversion technique. Net energy balances of separate grassland stands, agroforestry and pure willow stands evaluated their energy efficiency. Results of the biennial artificial shade experiment showed that severe shade (80 % light reduction) halved grassland productivity on average compared to a non-shaded control. White clover as heliophilous plant responded sensitively to limited radiation and its dry matter contribution in the sward decreased with increasing shade, whereas non-leguminous forbs (mainly segetal species) benefited. Changes in nutritive quality could not be confirmed by this experiment. Through the study on interactions within the alleys of the young agroforestry system it was possible to outline changes of incident light, soil temperature and sward composition of clover-grass along the tree-grassland interface. Nearly no effects of trees on precipitation, soil moisture and understory productivity occurred along the interface during the biennial experiment. Considering the results of the productivity and the net energy yield alley cropping system had lower than pure grassland stands, irrespective of the grassland seed mixture or fertilization, but was higher than that for pure willow stands. The comparison of three different energetic conversion techniques for the grassland biomass showed highest net energy yields for hay combustion, whereas the integrated generation of solid fuel and biogas from biomass (IFBB) and whole crop digestion performed similarly. However, due to the low fuel quality of hay, its direct combustion cannot be recommended as a viable conversion technique, whereas IFBB fuels were of a similar quality to wood chip from willow.