6 resultados para Semi-infinite and infinite programming
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
This exploratory study evaluated biophysical, cultural and socio-economic factors affecting crop production and land utilisation in the Nkonkobe Municipality, South Africa. The study sought to establish what farmers in the area perceive as serious threats to crop production, drivers for land abandonment, and how best current agricultural production could be intensified. The farmers’ perspectives were assessed through interviews using semi-structured and open-ended questionnaires. The results of the study revealed declining crop productivity and increase in land abandonment in the Municipality. The biophysical drivers of land abandonment were low and erratic rainfall and land degradation while the socio-economic drivers were labour shortages due to old age and youth movement to cities, lack of farming equipment and security concerns. The most abandoned crops were maize, sorghum and wheat. This trend was attributed to the labour intensiveness of cereal production and a shift in dietary preference to purchased rice. These findings should be factored in any programmes that seek to increase land utilisation and crop productivity in the Municipality.
Resumo:
Agriculture in semi-arid and arid regions is constantly gaining importance for the security of the nutrition of humankind because of the rapid population growth. At the same time, especially these regions are more and more endangered by soil degradation, limited resources and extreme climatic conditions. One way to retain soil fertility under these conditions in the long run is to increase the soil organic matter. Thus, a two-year field experiment was conducted to test the efficiency of activated charcoal and quebracho tannin extract as stabilizers of soil organic matter on a sandy soil low in nutrients in Northern Oman. Both activated charcoal and quebracho tannin extract were either fed to goats and after defecation applied to the soil or directly applied to the soil in combination with dried goat manure. Regardless of the application method, both additives reduced decomposition of soil-applied organic matter and thus stabilized and increased soil organic carbon. The nutrient release from goat manure was altered by the application of activated charcoal and quebracho tannin extract as well, however, nutrient release was not always slowed down. While activated charcoal fed to goats, was more effective in stabilising soil organic matter and in reducing nutrient release than mixing it, for quebracho tannin extract the opposite was the case. Moreover, the efficiency of the additives was influenced by the cultivated crop (sweet corn and radish), leading to unexplained interactions. The reduced nutrient release caused by the stabilization of the organic matter might be the reason for the reduced yields for sweet corn caused by the application of manure amended with activated charcoal and quebracho tannin extract. Radish, on the other hand, was only inhibited by the presence of quebracho tannin extract but not by activated charcoal. This might be caused by a possible allelopathic effect of tannins on crops. To understand the mechanisms behind the changes in manure, in the soil, in the mineralisation and the plant development and to resolve detrimental effects, further research as recommended in this dissertation is necessary. Particularly in developing countries poor in resources and capital, feeding charcoal or tannins to animals and using their faeces as manure may be promising to increase soil fertility, sequester carbon and reduce nutrient losses, when yield reductions can be resolved.
Resumo:
The hyperfine structure and isotope shift of ^{221- 226}Ra and ^{212, 214}Ra have been measured in the ionic (Ra 11) transition 7s^2 S_{1/2} - 7p ^2 P_{3/2} (\lamda = 381.4 nm). The method of on-line collinear fast-beam laser spectroscopy has been applied using frequency-doubling of cw dye laser radiation in an external ring cavity. The magnetic hyperfine fields are compared with semi-empirical and ab initio calculations. The analysis of the quadrupole splitting by the same method yields the following, improved values of spectroscopic quadrupole moments: Q_s(^221 Ra)= 1.978(7)b, Q_s (^223 Ra)= 1.254(3)b and the reanalyzed values Q_s(^209 Ra) = 0.40(2)b, Q_s(^211 Ra) = 0.48(2)b, Q_s(^227 Ra)= 1.58(3)b, Q_s (^229 Ra) = 3.09(4)b with an additional scaling uncertainty of ±5%. Furthermore, the J-dependence of the isotope shift is analyzed in both Ra II transitions connecting the 7s^2 S_{1/2} ground state with the first excited doublet 7p^ P_{1/2} and 7p^ P_{3/2}.
Resumo:
This dissertation investigated higher education graduate competencies, acquired during their study period and required at work as perceived by the graduates themselves. This study also investigated whether graduates of professional, semiprofessional, and non-professional study programs acquired different levels of competencies during their studies and compared the gaps among the three groups of graduates. The case study is Universitas Kristen Indonesia graduates of graduation years 2001, 2003, and 2005, from the Faculties of Engineering, Economics and English, representing professional, semi-professional and nonprofessional study programs respectively.
Resumo:
The main focus and concerns of this PhD thesis is the growth of III-V semiconductor nanostructures (Quantum dots (QDs) and quantum dashes) on silicon substrates using molecular beam epitaxy (MBE) technique. The investigation of influence of the major growth parameters on their basic properties (density, geometry, composition, size etc.) and the systematic characterization of their structural and optical properties are the core of the research work. The monolithic integration of III-V optoelectronic devices with silicon electronic circuits could bring enormous prospect for the existing semiconductor technology. Our challenging approach is to combine the superior passive optical properties of silicon with the superior optical emission properties of III-V material by reducing the amount of III-V materials to the very limit of the active region. Different heteroepitaxial integration approaches have been investigated to overcome the materials issues between III-V and Si. However, this include the self-assembled growth of InAs and InGaAs QDs in silicon and GaAx matrices directly on flat silicon substrate, sitecontrolled growth of (GaAs/In0,15Ga0,85As/GaAs) QDs on pre-patterned Si substrate and the direct growth of GaP on Si using migration enhanced epitaxy (MEE) and MBE growth modes. An efficient ex-situ-buffered HF (BHF) and in-situ surface cleaning sequence based on atomic hydrogen (AH) cleaning at 500 °C combined with thermal oxide desorption within a temperature range of 700-900 °C has been established. The removal of oxide desorption was confirmed by semicircular streaky reflection high energy electron diffraction (RHEED) patterns indicating a 2D smooth surface construction prior to the MBE growth. The evolution of size, density and shape of the QDs are ex-situ characterized by atomic-force microscopy (AFM) and transmission electron microscopy (TEM). The InAs QDs density is strongly increased from 108 to 1011 cm-2 at V/III ratios in the range of 15-35 (beam equivalent pressure values). InAs QD formations are not observed at temperatures of 500 °C and above. Growth experiments on (111) substrates show orientation dependent QD formation behaviour. A significant shape and size transition with elongated InAs quantum dots and dashes has been observed on (111) orientation and at higher Indium-growth rate of 0.3 ML/s. The 2D strain mapping derived from high-resolution TEM of InAs QDs embedded in silicon matrix confirmed semi-coherent and fully relaxed QDs embedded in defectfree silicon matrix. The strain relaxation is released by dislocation loops exclusively localized along the InAs/Si interfaces and partial dislocations with stacking faults inside the InAs clusters. The site controlled growth of GaAs/In0,15Ga0,85As/GaAs nanostructures has been demonstrated for the first time with 1 μm spacing and very low nominal deposition thicknesses, directly on pre-patterned Si without the use of SiO2 mask. Thin planar GaP layer was successfully grown through migration enhanced epitaxy (MEE) to initiate a planar GaP wetting layer at the polar/non-polar interface, which work as a virtual GaP substrate, for the GaP-MBE subsequently growth on the GaP-MEE layer with total thickness of 50 nm. The best root mean square (RMS) roughness value was as good as 1.3 nm. However, these results are highly encouraging for the realization of III-V optical devices on silicon for potential applications.
Resumo:
This report is intended to shed more light on the ongoing water struggle in Caimanes, a small urban area in the central northern area of Chile, neighbouring Latin America’s biggest tailings dam. Undoubtedly, the water in Caimanes is running out and the conflict between the opponents of the dam and its owner, a multinational copper enterprise, is getting more and more attention by the national and also international media. In the discussion a judgment of the Chilean Supreme Court from last October plays a central role, because it is said to have granted the people from Caimanes their right to water. After a short introduction with some details about Camaines and the tailings from the dam El Mauro, the key points of this judgment shall be outlined. The final part of the report is dedicated to various institutional problems of the Chilean resources law and policy that can become virulent for the water supply and the environmental well-being of many other urban areas in the industrialized north of Chile.