3 resultados para Seawater Intrusion
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
The ongoing depletion of the coastal aquifer in the Gaza strip due to groundwater overexploitation has led to the process of seawater intrusion, which is continually becoming a serious problem in Gaza, as the seawater has further invaded into many sections along the coastal shoreline. As a first step to get a hold on the problem, the artificial neural network (ANN)-model has been applied as a new approach and an attractive tool to study and predict groundwater levels without applying physically based hydrologic parameters, and also for the purpose to improve the understanding of complex groundwater systems and which is able to show the effects of hydrologic, meteorological and anthropogenic impacts on the groundwater conditions. Prediction of the future behaviour of the seawater intrusion process in the Gaza aquifer is thus of crucial importance to safeguard the already scarce groundwater resources in the region. In this study the coupled three-dimensional groundwater flow and density-dependent solute transport model SEAWAT, as implemented in Visual MODFLOW, is applied to the Gaza coastal aquifer system to simulate the location and the dynamics of the saltwater–freshwater interface in the aquifer in the time period 2000-2010. A very good agreement between simulated and observed TDS salinities with a correlation coefficient of 0.902 and 0.883 for both steady-state and transient calibration is obtained. After successful calibration of the solute transport model, simulation of future management scenarios for the Gaza aquifer have been carried out, in order to get a more comprehensive view of the effects of the artificial recharge planned in the Gaza strip for some time on forestall, or even to remedy, the presently existing adverse aquifer conditions, namely, low groundwater heads and high salinity by the end of the target simulation period, year 2040. To that avail, numerous management scenarios schemes are examined to maintain the ground water system and to control the salinity distributions within the target period 2011-2040. In the first, pessimistic scenario, it is assumed that pumping from the aquifer continues to increase in the near future to meet the rising water demand, and that there is not further recharge to the aquifer than what is provided by natural precipitation. The second, optimistic scenario assumes that treated surficial wastewater can be used as a source of additional artificial recharge to the aquifer which, in principle, should not only lead to an increased sustainable yield of the latter, but could, in the best of all cases, revert even some of the adverse present-day conditions in the aquifer, i.e., seawater intrusion. This scenario has been done with three different cases which differ by the locations and the extensions of the injection-fields for the treated wastewater. The results obtained with the first (do-nothing) scenario indicate that there will be ongoing negative impacts on the aquifer, such as a higher propensity for strong seawater intrusion into the Gaza aquifer. This scenario illustrates that, compared with 2010 situation of the baseline model, at the end of simulation period, year 2040, the amount of saltwater intrusion into the coastal aquifer will be increased by about 35 %, whereas the salinity will be increased by 34 %. In contrast, all three cases of the second (artificial recharge) scenario group can partly revert the present seawater intrusion. From the water budget point of view, compared with the first (do nothing) scenario, for year 2040, the water added to the aquifer by artificial recharge will reduces the amount of water entering the aquifer by seawater intrusion by 81, 77and 72 %, for the three recharge cases, respectively. Meanwhile, the salinity in the Gaza aquifer will be decreased by 15, 32 and 26% for the three cases, respectively.
Resumo:
The Sultanate of Oman is located on the south-eastern coast of the Arabian Peninsula, which lies on the south-western tip of the Asian continent. The strategic geographical locations of the Sultanate with its many maritime ports distributed on the Indian Ocean have historically made it one of the Arabian Peninsula leaders in the international maritime trade sector. Intensive trading relationships over long time periods have contributed to the high plant diversity seen in Oman where agricultural production depends entirely on irrigation from groundwater sources. As a consequence of the expansion of the irrigated area, groundwater depletion has increased, leading to the intrusion of seawater into freshwater aquifers. This phenomenon has caused water and soil salinity problems in large parts of the Al-Batinah governorate of Oman and threatens cultivated crops, including banana (Musa spp.). According to the Ministry of Agriculture and Fisheries, the majority of South Al-Batinah farms are affected by salinity (ECe > 4 dS m-1). As no alternative farmland is available, the reclamation of salt-affected soils using simple cultural practices is of paramount importance, but in Oman little scientific research has been conducted to develop such methods of reclamation. This doctoral study was initiated to help filling this research gap, particularly for bananas. A literature review of the banana cultivation history revealed that the banana germplasm on the Arabian Peninsula is probably introduced from Indonesia and India via maritime routes across the Indian Ocean and the Red Sea. In a second part of this dissertation, two experiments are described. A laboratory trial conducted at the University of Kassel, in Witzenhausen, Germany from June to July 2010. This incubation experiment was done to explore how C and N mineralization of composted dairy manure and date palm straw differed in alkaline non-saline and saline soils. Each soil was amended with four organic fertilizers: 1) composted dairy manure, 2) manure + 10% date palm straw, 3) manure + 30% date palm straw or 4) date palm straw alone, in addition to un-amended soils as control. The results showed that the saline soil had a lower soil organic C content and microbial biomass C than the non-saline soil. This led to lower mineralization rates of manure and date palm straw in the saline soil. In the non-saline soil, the application of manure and straw resulted in significant increases of CO2 emissions, equivalent to 2.5 and 30% of the added C, respectively. In the non-amended control treatment of the saline soil, the sum of CO2-C reached only 55% of the soil organic C in comparison with the non-saline soil. In which 66% of the added manure and 75% of the added straw were emitted, assuming that no interactions occurred between soil organic C, manure C and straw C during microbial decomposition. The application of straw always led to a net N immobilization compared to the control. Salinity had no specific effect on N mineralization as indicated by the CO2-C to Nmin ratio of soil organic matter and manure. However, N immobilization was markedly stronger in the saline soil. Date palm straw strongly promoted saprotrophic fungi in contrast to manure and the combined application of manure and date palm straw had synergistic positive effects on soil microorganisms. In the last week of incubation, net-N mineralization was observed in nearly all treatments. The strongest increase in microbial biomass C was observed in the manure + straw treatment. In both soils, manure had no effect on the fungi-specific membrane component ergosterol. In contrast, the application of straw resulted in strong increases of the ergosterol content. A field experiment was conducted on two adjacent fields at the Agricultural Research Station, Rumais (23°41’15” N, 57°59’1” E) in the South of Al-Batinah Plain in Oman from October 2007 to July 2009. In this experiment, the effects of 24 soil and fertilizer treatments on the growth and productivity of Musa AAA cv. 'Malindi' were evaluated. The treatments consisted of two soil types (saline and amended non-saline), two fertilizer application methods (mixed and ring applied), six fertilizer amendments (1: fresh dairy manure, 2: composted dairy manure, 3: composted dairy manure and 10% date palm straw, 4: composted dairy manure and 30% date palm straw, 5: only NPK, and 6: NPK and micronutrients). Sandy loam soil was imported from another part of Oman to amended the soil in the planting holes and create non-saline conditions in the root-zone. The results indicate that replacing the saline soil in the root zone by non-saline soil improved plant growth and yield more than fertilizer amendments or application methods. Particularly those plants on amended soil where NPK was applied using the ring method and which received micronutrients grew significantly faster to harvest (339 days), had a higher average bunch weight (9.5 kg/bunch) and were consequently more productive (10.6 tonnes/hectare/cycle) compared to the other treatments.
Resumo:
Die zunehmende Vernetzung der Informations- und Kommunikationssysteme führt zu einer weiteren Erhöhung der Komplexität und damit auch zu einer weiteren Zunahme von Sicherheitslücken. Klassische Schutzmechanismen wie Firewall-Systeme und Anti-Malware-Lösungen bieten schon lange keinen Schutz mehr vor Eindringversuchen in IT-Infrastrukturen. Als ein sehr wirkungsvolles Instrument zum Schutz gegenüber Cyber-Attacken haben sich hierbei die Intrusion Detection Systeme (IDS) etabliert. Solche Systeme sammeln und analysieren Informationen von Netzwerkkomponenten und Rechnern, um ungewöhnliches Verhalten und Sicherheitsverletzungen automatisiert festzustellen. Während signatur-basierte Ansätze nur bereits bekannte Angriffsmuster detektieren können, sind anomalie-basierte IDS auch in der Lage, neue bisher unbekannte Angriffe (Zero-Day-Attacks) frühzeitig zu erkennen. Das Kernproblem von Intrusion Detection Systeme besteht jedoch in der optimalen Verarbeitung der gewaltigen Netzdaten und der Entwicklung eines in Echtzeit arbeitenden adaptiven Erkennungsmodells. Um diese Herausforderungen lösen zu können, stellt diese Dissertation ein Framework bereit, das aus zwei Hauptteilen besteht. Der erste Teil, OptiFilter genannt, verwendet ein dynamisches "Queuing Concept", um die zahlreich anfallenden Netzdaten weiter zu verarbeiten, baut fortlaufend Netzverbindungen auf, und exportiert strukturierte Input-Daten für das IDS. Den zweiten Teil stellt ein adaptiver Klassifikator dar, der ein Klassifikator-Modell basierend auf "Enhanced Growing Hierarchical Self Organizing Map" (EGHSOM), ein Modell für Netzwerk Normalzustand (NNB) und ein "Update Model" umfasst. In dem OptiFilter werden Tcpdump und SNMP traps benutzt, um die Netzwerkpakete und Hostereignisse fortlaufend zu aggregieren. Diese aggregierten Netzwerkpackete und Hostereignisse werden weiter analysiert und in Verbindungsvektoren umgewandelt. Zur Verbesserung der Erkennungsrate des adaptiven Klassifikators wird das künstliche neuronale Netz GHSOM intensiv untersucht und wesentlich weiterentwickelt. In dieser Dissertation werden unterschiedliche Ansätze vorgeschlagen und diskutiert. So wird eine classification-confidence margin threshold definiert, um die unbekannten bösartigen Verbindungen aufzudecken, die Stabilität der Wachstumstopologie durch neuartige Ansätze für die Initialisierung der Gewichtvektoren und durch die Stärkung der Winner Neuronen erhöht, und ein selbst-adaptives Verfahren eingeführt, um das Modell ständig aktualisieren zu können. Darüber hinaus besteht die Hauptaufgabe des NNB-Modells in der weiteren Untersuchung der erkannten unbekannten Verbindungen von der EGHSOM und der Überprüfung, ob sie normal sind. Jedoch, ändern sich die Netzverkehrsdaten wegen des Concept drif Phänomens ständig, was in Echtzeit zur Erzeugung nicht stationärer Netzdaten führt. Dieses Phänomen wird von dem Update-Modell besser kontrolliert. Das EGHSOM-Modell kann die neuen Anomalien effektiv erkennen und das NNB-Model passt die Änderungen in Netzdaten optimal an. Bei den experimentellen Untersuchungen hat das Framework erfolgversprechende Ergebnisse gezeigt. Im ersten Experiment wurde das Framework in Offline-Betriebsmodus evaluiert. Der OptiFilter wurde mit offline-, synthetischen- und realistischen Daten ausgewertet. Der adaptive Klassifikator wurde mit dem 10-Fold Cross Validation Verfahren evaluiert, um dessen Genauigkeit abzuschätzen. Im zweiten Experiment wurde das Framework auf einer 1 bis 10 GB Netzwerkstrecke installiert und im Online-Betriebsmodus in Echtzeit ausgewertet. Der OptiFilter hat erfolgreich die gewaltige Menge von Netzdaten in die strukturierten Verbindungsvektoren umgewandelt und der adaptive Klassifikator hat sie präzise klassifiziert. Die Vergleichsstudie zwischen dem entwickelten Framework und anderen bekannten IDS-Ansätzen zeigt, dass der vorgeschlagene IDSFramework alle anderen Ansätze übertrifft. Dies lässt sich auf folgende Kernpunkte zurückführen: Bearbeitung der gesammelten Netzdaten, Erreichung der besten Performanz (wie die Gesamtgenauigkeit), Detektieren unbekannter Verbindungen und Entwicklung des in Echtzeit arbeitenden Erkennungsmodells von Eindringversuchen.