13 resultados para Salts in soils
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
An important feature of maintaining the agricultural stability in millennia-old mountain oases of northern Oman is the temporary abandonment of terraces. To analyse the effects of a fallow period on soil microbial performance, i.e. microbial activity and microbial biomass, samples of eight terrace soils abandoned for different periods were collected in situ, assigned to four fallow age classes and incubated for 30 days in the laboratory after rewetting. The younger fallow age classes of 1 and 5 years were based on the records of the farmers’ recollections, the two older fallow age classes of 10–20 and 25–60 years according to the increase in the D -to- L ratio of valine and leucine enantiomers. The increase in these two ratios was in agreement with that of the D -to- L ratio of lysine. The strongest relationship was observed between the increase in the D -to- L ratio of lysine and the decrease in soil microbial biomass C. However, the most stringent coherence between the increase in fallow age and soil properties was revealed by the decreases in cumulative respiration and net N mineralisation rates with decreasing availability of substrate to soil microorganisms. During the 30-day incubation following rewetting, relative changes in microbial activity (respiration and net N mineralisation) and microbial biomass (C and N)indices were similar in the eight terrace soils on a fallow age-class-specific level, indicating that the same basic processes occurred in all of the sandy terrace soils investigated.
Resumo:
Soil organic matter (SOM) vitally impacts all soil functions and plays a key role in the global carbon (C) cycle. More than 70% of the terrestric C stocks that participate in the active C cycle are stored in the soil. Therefore, quantitative knowledge of the rates of C incorporation into SOM fractions of different residence time is crucial to understand and predict the sequestration and stabilization of soil organic carbon (SOC). Consequently, there is a need of fractionation procedures that are capable of isolating functionally SOM fractions, i.e. fractions that are defined by their stability. The literature generally refers to three main mechanisms of SOM stabilization: protection of SOM from decomposition by (i) its structural composition, i.e. recalcitrance, (ii) spatial inaccessibility and/or (iii) interaction with soil minerals and metal ions. One of the difficulties in developing fractionation procedures for the isolation of functional SOM fractions is the marked heterogeneity of the soil environment with its various stabilization mechanisms – often several mechanisms operating simultaneously – in soils and soil horizons of different texture and mineralogy. The overall objective of the present thesis was to evaluate present fractionation techniques and to get a better understanding of the factors of SOM sequestration and stabilization. The first part of this study is attended to the structural composition of SOM. Using 13C cross-polarization magic-angle spinning (CPMAS) nuclear magnetic resonance (NMR) spectroscopy, (i) the effect of land use on SOM composition was investigated and (ii) examined whether SOM composition contributes to the different stability of SOM in density and aggregate fractions. The second part of the present work deals with the mineral-associated SOM fraction. The aim was (iii) to evaluate the suitability of chemical fractionation procedures used in the literature for the isolation of stable SOM pools (stepwise hydrolysis, treatments using oxidizing agents like Na2S2O8, H2O2, and NaOCl as well as demineralization of the residue obtained by the NaOCl treatment using HF (NaOCl+HF)) by pool sizes, 13C and 14C data. Further, (iv) the isolated SOM fractions were compared to the inert organic matter (IOM) pool obtained for the investigated soils using the Rothamsted Carbon Model and isotope data in order to see whether the tested chemical fractionation methods produce SOM fractions capable to represent this pool. Besides chemical fractionation, (v) the suitability of thermal oxidation at different temperatures for obtaining stable SOC pools was evaluated. Finally, (vi) the short-term aggregate dynamics and the factors that impact macroaggregate formation and C stabilization were investigated by means of an incubation study using treatments with and without application of 15N labeled maize straw of different degradability (leaves and coarse roots). All treatments were conducted with and without the addition of fungicide. Two study sites with different soil properties and land managements were chosen for these investigations. The first one, located at Rotthalmünster, is a Stagnic Luvisol (silty loam) under different land use regimes. The Ah horizons of a spruce forest and continuous grassland and the Ap and E horizons of two plots with arable crops (continuous maize and wheat cropping) were examined. The soil of the second study site, located at Halle, is a Haplic Phaeozem (loamy sand) where the Ap horizons of two plots with arable crops (continuous maize and rye cropping) were investigated. Both study sites had a C3-/C4-vegetational change on the maize plot for the purpose of tracing the incorporation of the younger, maize-derived C into different SOM fractions and the calculation of apparent C turnover times of these. The Halle site is located near a train station and industrial areas, which caused a contamination with high amounts of fossil C. The investigation of aggregate and density fractions by 13C CPMAS NMR spectroscopy revealed that density fractionation isolated SOM fractions of different composition. The consumption of a considerable part (10–20%) of the easily available O-alkyl-C and the selective preservation of the more recalcitrant alkyl-C when passing from litter to the different particulate organic matter (POM) fractions suggest that density fractionation was able to isolate SOM fractions with different degrees of decomposition. The spectra of the aggregate fractions resembled those of the mineral-associated SOM fraction obtained by density fractionation and no considerable differences were observed between aggregate size classes. Comparison of plant litter, density and aggregate size fractions from soil under different land use showed that the type of land use markedly influenced the composition of SOM. While SOM of the acid forest soil was characterized by a large content (> 50%) of POM, which contained high amounts of spruce-litter derived alkyl-C, the organic matter in the biologically more active grassland and arable soils was dominated by mineral-associated SOM (> 95%). This SOM fraction comprised greater proportions of aryl- and carbonyl-C and is considered to contain a higher amount of microbially-derived organic substances. Land use can alter both, structure and stability of SOM fractions. All applied chemical treatments induced considerable SOC losses (> 70–95% of mineral-associated SOM) in the investigated soils. The proportion of residual C after chemical fractionation was largest in the arable Ap and E horizons and increased with decreasing C content in the initial SOC after stepwise hydrolysis as well as after the oxidative treatments with H2O2 and Na2S2O8. This can be expected for a functional stable pool of SOM, because it is assumed that the more easily available part of SOC is consumed first if C inputs decrease. All chemical treatments led to a preferential loss of the younger, maize-derived SOC, but this was most pronounced after the treatments with Na2S2O8 and H2O2. After all chemical fractionations, the mean 14C ages of SOC were higher than in the mineral-associated SOM fraction for both study sites and increased in the order: NaOCl < NaOCl+HF ≤ stepwise hydrolysis << H2O2 ≈ Na2S2O8. The results suggest that all treatments were capable of isolating a more stable SOM fraction, but the treatments with H2O2 and Na2S2O8 were the most efficient ones. However, none of the chemical fractionation methods was able to fit the IOM pool calculated using the Rothamsted Carbon Model and isotope data. In the evaluation of thermal oxidation for obtaining stable C fractions, SOC losses increased with temperature from 24–48% (200°C) to 100% (500°C). In the Halle maize Ap horizon, losses of the young, maize-derived C were considerably higher than losses of the older C3-derived C, leading to an increase in the apparent C turnover time from 220 years in mineral-associated SOC to 1158 years after thermal oxidation at 300°C. Most likely, the preferential loss of maize-derived C in the Halle soil was caused by the presence of the high amounts of fossil C mentioned above, which make up a relatively large thermally stable C3-C pool in this soil. This agrees with lower overall SOC losses for the Halle Ap horizon compared to the Rotthalmünster Ap horizon. In the Rotthalmünster soil only slightly more maize-derived than C3-derived SOC was removed by thermal oxidation. Apparent C turnover times increased slightly from 58 years in mineral-associated SOC to 77 years after thermal oxidation at 300°C in the Rotthalmünster Ap and from 151 to 247 years in the Rotthalmünster E horizon. This led to the conclusion that thermal oxidation of SOM was not capable of isolating SOM fractions of considerably higher stability. The incubation experiment showed that macroaggregates develop rapidly after the addition of easily available plant residues. Within the first four weeks of incubation, the maximum aggregation was reached in all treatments without addition of fungicide. The formation of water-stable macroaggregates was related to the size of the microbial biomass pool and its activity. Furthermore, fungi were found to be crucial for the development of soil macroaggregates as the formation of water-stable macroaggregates was significantly delayed in the fungicide treated soils. The C concentration in the obtained aggregate fractions decreased with decreasing aggregate size class, which is in line with the aggregate hierarchy postulated by several authors for soils with SOM as the major binding agent. Macroaggregation involved incorporation of large amounts maize-derived organic matter, but macroaggregates did not play the most important role in the stabilization of maize-derived SOM, because of their relatively low amount (less than 10% of the soil mass). Furthermore, the maize-derived organic matter was quickly incorporated into all aggregate size classes. The microaggregate fraction stored the largest quantities of maize-derived C and N – up to 70% of the residual maize-C and -N were stored in this fraction.
Resumo:
The increased use of cereal/legume crop rotation has been advocated as a strategy to increase cereal yields of subsistence farmers in West Africa, and is believed to promote changes in the rhizosphere that enhance early plant growth. In this study we investigated the microbial diversity of the rhizoplane from seedlings grown in two soils previously planted to cereal or legume from experimental plots in Gaya, Niger, and Kaboli, Togo. Soils from these legume rotation and continuous cereal plots were placed into containers and sown in a growth chamber with maize (Zea mays L.), millet (Pennisetum glaucum L.), sorghum (Sorghum bicolor L. Moench.), cowpea (Vigna unguiculata L.) or groundnut (Arachis hypogaea L.). At 7 and 14 days after sowing, 16S rDNA profiles of the eubacterial and ammoniaoxidizing communities from the rhizoplane and bulk soil were generated using denaturing gradient gel electrophoresis (DGGE). Community profiles were subjected to peak fitting analyses to quantify the DNA band position and intensities, after which these data were compared using correspondence and principal components analysis. The data showed that cropping system had a highly significant effect on community structure (p <0.005), irrespective of plant species or sampling time. Continuous cereal-soil grown plants had highly similar rhizoplane communities across crop species and sites, whereas communities from the rotation soil showed greater variability and clustered with respect to plant species. Analyses of the ammonia-oxidizing communities provided no evidence of any effects of plant species or management history on ammonia oxidizers in soil from Kaboli, but there were large shifts with respect to this group of bacteria in soils from Gaya. The results of these analyses show that crop rotation can cause significant shifts in rhizosphere bacterial communities.
Resumo:
Artisanal columbite-tantalite (coltan) mining has had negative effects on the rural economy in the great Lakes region of Africa through labor deficits, degradation and loss of farmland, food insecurity, high cost of living, and reduced traditional export crop production alongside secondary impacts that remotely affect the quality of air, water, soil, plants, animals, and human wellbeing. The situation is multifaceted and calls for a holistic approach for short and long-term mitigation of such negative effects. This study focuses on the effects of mine land restoration on soil microbiological quality in the Gatumba Mining District of western Rwanda. Some coltan mine wastelands were afforested with pine and eucalyptus trees while farmers directly cultivated others due to land scarcity. Farmyard manure (FYM) is the sole fertilizer applied on the wastelands although it is insufficient to achieve the desired crop yields. Despite this, several multi-purpose plants such as Tithonia diversifolia, Markhamia lutea, and Canavalia brasiliensis thrive in the area and could supplement FYM. The potential for these “new” amendments to improve soil microbial properties, particularly in the tantalite mine soils was investigated. The specific objectives of the study were to: (a) evaluate the effects of land use on soil microbial indices of the tantalite mine soils; (b) investigate the restorative effects of organic amendments on a Technosol; and (c) estimate the short-term N and P supply potential of the soil amendments in the soils. Fresh soils (0-20 cm) from an unmined native forest, two mine sites afforested with pine and eucalyptus forests (pine and eucalyptus Technosols), an arable land, and two cultivated Technosols (Kavumu and Kirengo Technosols) were analyzed for the physicochemical properties. Afterwards, a 28-day incubation (22oC) experiment was conducted followed by measurements of mineral N, soil microbial biomass C, N, P, and fungal ergosterol contents using standard methods. This was followed by a 12-week incubation study of the arable soil and the Kavumu Technosol amended with FYM, Canavalia and Tithonia biomass, and Markhamia leaf litter after which soil microbial properties were measured at 2, 8, and 12 weeks of incubation. Finally, two 4-week incubation experiments each were conducted in soils of the six sites to estimate (i) potential mineralizable N using a soil-sand mixture (1:1) amended with Canavalia and goat manure and (ii) P mineralization mixtures (1:1) of soil and anion exchange resins in bicarbonate form amended with Tithonia biomass and goat manure. In study one, afforestation increased soil organic carbon and total N contents in the pine and eucalyptus Technosols by 34-40% and 28-30%, respectively of that in the native forest soil. Consequently, the microbial biomass and activity followed a similar trend where the cultivated Technosols were inferior to the afforested ones. The microbial indices of the mine soils were constrained by soil acidity, dithionite-extractable Al, and low P availability. In study two, the amendments substantially increased C and N mineralization, microbial properties compared with non-amended soils. Canavalia biomass increased CO2 efflux by 340%, net N mineralization by 30-140%, and microbial biomass C and N by 240-600% and 240-380% (P < 0.01), respectively after four weeks of incubation compared with the non-amended soils. Tithonia biomass increased ergosterol content by roughly 240%. The Kavumu Technosol showed a high potential for quick restoration of its soil quality due to its major responses to the measured biological parameters. In study three, Canavalia biomass gave the highest mineralizable N (130 µg g-1 soil, P < 0.01) in the Kavumu Technosol and the lowest in the native forest soil (-20 µg g-1 soil). Conversely, the mineralizable N of goat manure was negative in all soils ranging from -2.5 µg N g-1 to -7.7 µg N g-1 soil except the native forest soil. However, the immobilization of goat manure N in the “cultivated soils” was 30-70% lower than in the “forest soils” signifying an imminent recovery of the amended soils from N immobilization. The mineralization of goat manure P was three-fold that of Tithonia, constituting 61-71% of total P applied. Phosphorus mineralization slightly decreased after four weeks of incubation due to sulfate competition as reflected in a negative correlation, which was steeper in the Tithonia treatment. In conclusion, each amendment used in this research played a unique role in C, N, and P mineralization and contributed substantially to microbial properties in the tantalite mine soils. Interestingly, the “N immobilizers” exhibited potentials for P release and soil organic carbon storage. Consequently, the combined use of the amendments in specific ratios, or co-composting prior to application is recommended to optimize nutrient release, microbial biomass dynamics and soil organic matter accrual. Transport of organic inputs seems more feasible for smallholder farmers who typically manage small field sizes. To reduce acidity in the soils, liming with wood ash was recommended to also improve P availability and enhance soil biological quality, even if it may only be possible on small areas. Further, afforestation with mixed-species of fast-growing eucalyptus and legume or indigenous tree species are suggested to restore tantalite mine wastelands. It is emphasized most of this research was conducted under controlled laboratory conditions, which exclude interaction with environmental variables. Also fine fractions of the amendments were used compared with the usual practice of applying a mixture of predominantly coarser fractions. Therefore, the biological dynamics reported in the studies here may not entirely reflect those of farmers’ field conditions.
Resumo:
Die gegenwärtige Entwicklung der internationalen Klimapolitik verlangt von Deutschland eine Reduktion seiner Treibhausgasemissionen. Wichtigstes Treibhausgas ist Kohlendioxid, das durch die Verbrennung fossiler Energieträger in die Atmosphäre freigesetzt wird. Die Reduktionsziele können prinzipiell durch eine Verminderung der Emissionen sowie durch die Schaffung von Kohlenstoffsenken erreicht werden. Senken beschreiben dabei die biologische Speicherung von Kohlenstoff in Böden und Wäldern. Eine wichtige Einflussgröße auf diese Prozesse stellt die räumliche Dynamik der Landnutzung einer Region dar. In dieser Arbeit wird das Modellsystem HILLS entwickelt und zur Simulation dieser komplexen Wirkbeziehungen im Bundesland Hessen genutzt. Ziel ist es, mit HILLS über eine Analyse des aktuellen Zustands hinaus auch Szenarien über Wege der zukünftigen regionalen Entwicklung von Landnutzung und ihrer Wirkung auf den Kohlenstoffhaushalt bis 2020 zu untersuchen. Für die Abbildung der räumlichen und zeitlichen Dynamik von Landnutzung in Hessen wird das Modell LUCHesse entwickelt. Seine Aufgabe ist die Simulation der relevanten Prozesse auf einem 1 km2 Raster, wobei die Raten der Änderung exogen als Flächentrends auf Ebene der hessischen Landkreise vorgegeben werden. LUCHesse besteht aus Teilmodellen für die Prozesse: (A) Ausbreitung von Siedlungs- und Gewerbefläche, (B) Strukturwandel im Agrarsektor sowie (C) Neuanlage von Waldflächen (Aufforstung). Jedes Teilmodell umfasst Methoden zur Bewertung der Standorteignung der Rasterzellen für unterschiedliche Landnutzungsklassen und zur Zuordnung der Trendvorgaben zu solchen Rasterzellen, die jeweils am besten für eine Landnutzungsklasse geeignet sind. Eine Validierung der Teilmodelle erfolgt anhand von statistischen Daten für den Zeitraum von 1990 bis 2000. Als Ergebnis eines Simulationslaufs werden für diskrete Zeitschritte digitale Karten der Landnutzugsverteilung in Hessen erzeugt. Zur Simulation der Kohlenstoffspeicherung wird eine modifizierte Version des Ökosystemmodells Century entwickelt (GIS-Century). Sie erlaubt einen gesteuerten Simulationslauf in Jahresschritten und unterstützt die Integration des Modells als Komponente in das HILLS Modellsystem. Es werden verschiedene Anwendungsschemata für GIS-Century entwickelt, mit denen die Wirkung der Stilllegung von Ackerflächen, der Aufforstung sowie der Bewirtschaftung bereits bestehender Wälder auf die Kohlenstoffspeicherung untersucht werden kann. Eine Validierung des Modells und der Anwendungsschemata erfolgt anhand von Feld- und Literaturdaten. HILLS implementiert eine sequentielle Kopplung von LUCHesse mit GIS-Century. Die räumliche Kopplung geschieht dabei auf dem 1 km2 Raster, die zeitliche Kopplung über die Einführung eines Landnutzungsvektors, der die Beschreibung der Landnutzungsänderung einer Rasterzelle während des Simulationszeitraums enthält. Außerdem integriert HILLS beide Modelle über ein dienste- und datenbankorientiertes Konzept in ein Geografisches Informationssystem (GIS). Auf diesem Wege können die GIS-Funktionen zur räumlichen Datenhaltung und Datenverarbeitung genutzt werden. Als Anwendung des Modellsystems wird ein Referenzszenario für Hessen mit dem Zeithorizont 2020 berechnet. Das Szenario setzt im Agrarsektor eine Umsetzung der AGENDA 2000 Politik voraus, die in großem Maße zu Stilllegung von Ackerflächen führt, während für den Bereich Siedlung und Gewerbe sowie Aufforstung die aktuellen Trends der Flächenausdehnung fortgeschrieben werden. Mit HILLS ist es nun möglich, die Wirkung dieser Landnutzungsänderungen auf die biologische Kohlenstoffspeicherung zu quantifizieren. Während die Ausdehnung von Siedlungsflächen als Kohlenstoffquelle identifiziert werden kann (37 kt C/a), findet sich die wichtigste Senke in der Bewirtschaftung bestehender Waldflächen (794 kt C/a). Weiterhin führen die Stilllegung von Ackerfläche (26 kt C/a) sowie Aufforstung (29 kt C/a) zu einer zusätzlichen Speicherung von Kohlenstoff. Für die Kohlenstoffspeicherung in Böden zeigen die Simulationsexperimente sehr klar, dass diese Senke nur von beschränkter Dauer ist.
Resumo:
Das Ziel dieser Arbeit war, die Einflüsse von Wurzeln und Rhizodeposition auf den Umsatz von Körnerleguminosenresiduen und damit verknüpfte mikrobielle Prozesse zu untersuchen. In einem integrierten Versuch wurden Ackerbohne (Vicia faba L.), Erbse (Pisum sativum L.) und Weiße Lupine (Lupinus albus L.) untersucht. Der Versuch bestand aus drei Teilen, zwei Gefäß-Experimenten und einem Inkubationsexperiment, in denen ausgehend von einem Gefäß-Experiment derselbe Boden und dasselbe Pflanzenmaterial verwendet wurden. In Experiment I wurde die Stickstoff-Rhizodeposition der Körnerleguminosenarten, definiert als wurzelbürtiger N nach dem Entfernen aller sichtbaren Wurzeln im Boden, gemessen und der Verbleib des Rhizodepositions-N in verschiednenen Bodenpools untersucht. Dazu wurden die Leguminosen in einem Gefäßversuch unter Verwendung einer in situ 15N-Docht-Methode mit einer 15N Harnstofflösung pulsmarkiert. In Experiment II wurde der Umsatz der N-Rhizodeposition der Körnerleguminosen und der Einfluss der Rhizodeposition auf den anschließenden C- und N-Umsatz der Körnerleguminosenresiduen in einem Inkubationsexperiment untersucht. In Experiment III wurde der N-Transfer aus den Körnerleguminosenresiduen einschließlich N-Rhizodeposition in die mikrobielle Biomasse und die Folgefrüchte Weizen (Triticum aestivum L.) und Raps (Brassica napus L.) in einem Gewächshaus-Gefäßversuch ermittelt. Die in situ 15N Docht-Markierungs-Methode wies hohe 15N Wiederfindungsraten von ungefähr 84 Prozent für alle drei Leguminosenarten auf und zeigte eine vergleichsweise homogene 15N Verteilung zwischen verschiedenen Pflanzenteilen zur Reife. Die Wurzeln zeigten deutliche Effekte auf die N-Dynamik nach dem Anbau von Körnerleguminosen. Die Effekte konnten auf die N-Rhizodeposition und deren anschließenden Umsatz, Einflüsse der Rhizodeposition von Körnerleguminosen auf den anschließenden Umsatz ihrer Residuen (Stängel, Blätter, erfassbare Wurzeln) und die Wirkungen nachfolgender Nichtleguminosen auf den Umsatzprozess der Residuen zurückgeführt werden: Die N-Rhizodeposition betrug zur Reife der Pflanzen bezogen auf die Gesamt-N- Aufnahme 13 Prozent bei Ackerbohne und Erbse und 16 Prozent bei Weißer Lupine. Bezogen auf den Residual N nach Ernte der Körner erhöhte sich der relative Anteil auf 35 - 44 Prozent. Die N-Rhizodeposition ist daher ein wesentlicher Pool für die N-Bilanz von Körnerleguminosen und trägt wesentlich zur Erklärung positiver Fruchtfolgeeffekte nach Körnerleguminosen bei. 7 - 21 Prozent des Rhizodepositions-N wurden als Feinwurzeln nach Nasssiebung (200 µm) wiedergefunden. Nur 14 - 18 Prozent des Rhizodepositions-N wurde in der mikrobiellen Biomasse und ein sehr kleiner Anteil von 3 - 7 Prozent in der mineralischen N Fraktion gefunden. 48 bis 72 Prozent der N-Rhizodeposition konnte in keinem der untersuchten Pools nachgewiesen werden. Dieser Teil dürfte als mikrobielle Residualmasse immobilisiert worden sein. Nach 168 Tagen Inkubation wurden 21 bis 27 Prozent des Rhizodepositions-N in den mineralisiert. Der mineralisierte N stammte im wesentlichen aus zwei Pools: Zwischen 30 Prozent und 55 Prozent wurde aus der mikrobiellen Residualmasse mineralisiert und eine kleinere Menge stammte aus der mikrobielle Biomasse. Der Einfluss der Rhizodeposition auf den Umsatz der Residuen war indifferent. Durch Rhizodeposition wurde die C Mineralisierung der Leguminosenresiduen nur in der Lupinenvariante erhöht, wobei der mikrobielle N und die Bildung von mikrobieller Residualmasse aus den Leguminosenresiduen in allen Varianten durch Rhizodepositionseinflüsse erhöht waren. Das Potential des residualen Körnerleguminosen-N für die N Ernährung von Folgefrüchten war gering. Nur 8 - 12 Prozent des residualen N wurden in den Folgenfrüchten Weizen und Raps wiedergefunden. Durch die Berücksichtigung des Rhizodepositions-N war der relative Anteil des Residual-N bezogen auf die Gesamt-N-Aufnahme der Folgefrucht hoch und betrug zwischen 18 und 46 Prozent. Dies lässt auf einen höheren N-Beitrag der Körnerleguminosen schließen als bisher angenommen wurde. Die residuale N-Aufnahme von Weizen von der Blüte bis zur Reife wurde durch den Residual-N gespeist, der zur Blüte in der mikrobiellen Biomasse immobilisiert worden war. Die gesamte Poolgröße, Residual-N in der mikrobiellen Biomasse und in Weizen, veränderte sich von der Blüte bis zur Reife nicht. Jedoch konnte ein Rest von 80 Prozent des Residual-N in keinem der untersuchten Pools nachgewiesen werden und dürfte als mikrobielle Residualmasse immobilisiert worden sein oder ist noch nicht abgebaut worden. Die zwei unterschiedlichen Folgefrüchte - Weizen und Raps - zeigten sehr ähnliche Muster bei der N-Aufnahme, der Residual-N Wiederfindung und bei mikrobiellen Parametern für die Residuen der drei Körnerleguminosenarten. Ein differenzierender Effekt auf den Umsatz der Residuen bzw. auf das Residual-N-Aneignungsvermögen der Folgefrüchte konnte nicht beobachtet werden.
Resumo:
Recycling nutrients form sanitary wastes back into agricultural ecosystems offers an option to alleviate soil depletion in regions where the use of mineral fertiliser is limited. Exemplary nutrient and water cycling approaches, including collection, treatment and use of human urine, are established at Valley View University (VVU) in Greater Accra, Ghana. Concerns have been recently raised in regard to fate and impact of pharmaceutical residues in soils and interlinked environment. To evaluate in how far emerging knowledge can be transposed onto VVU, urban and rural environments in Greater Accra, spatial disease occurrence and drug consumption patterns were studied. Malaria has been found to represent the most severe health burden in Ghana, but there is also a high prevalence of infectious diseases. Drugs consumed in great quantities and in respect to their residual loads potentially problematic in the environment belong to therapeutic groups of: antibiotics, analgesics, drugs for diabetes, antimalarials, cardiovascular drugs and anthelmintics. Drug consumption revealed to be highest in urban and lowest in rural areas. At VVU the range of consumed drugs is comparable to urban areas except for the negligible use of diabetes and cardiovascular medication as well as contraceptives.
Resumo:
The fertiliser value of human urine has been examined on several crops, yet little is known about its effects on key soil properties of agronomic significance. This study investigated temporal soil salinization potential of human urine fertiliser (HUF). It further looked at combined effects of human urine and wood ash (WA) on soil pH, urine-NH_3 volatilisation, soil electrical conductivity (EC), and basic cation contents of two Acrisols (Adenta and Toje series) from the coastal savannah zone of Ghana. The experiment was a factorial design conducted in the laboratory for 12 weeks. The results indicated an increase in soil pH by 1.2 units for Adenta series and 1 unit for Toje series after one week of HUF application followed by a decline by about 2 pH units for both soil types after twelve weeks. This was attributed to nitrification of ammonium to nitrate leading to acidification. The EC otherwise increased with HUF application creating slightly saline conditions in Toje series and non-saline conditions in Adenta series. When WA was applied with HUF, both soil pH and EC increased. In contrast, the HUF alone slightly salinized Toje series, but both soils remained non-saline whenWA and HUF were applied together. The application ofWA resulted in two-fold increase in Ca, Mg, K, and Na content compared to HUF alone. Hence, WA is a promising amendment of acid soils and could reduce the effect of soluble salts in human urine fertilizer, which is likely to cause soil salinity.
Resumo:
Two-third of the terrestrial C is stored in soils, and more than 50% of soil organic C (SOC) is stored in subsoils from 30 – 100 cm. Hence, subsoil is important as a source or sink for CO2 in the global carbon cycle. Especially the stable organic carbon (OC) is stored in subsoil, as several studies have shown that subsoil OC is of a higher average age than topsoil OC. However, there is still a lack of knowledge regarding the mechanisms of C sequestration and C turnover in subsoil. Three main factors are discussed, which possibly reduce carbon turnover rates in subsoil: Resource limitation, changes in the microbial community, and changes in gas conditions. The experiments conducted in this study, which aimed to elucidate the importance of the mentioned factors, focused on two neighbouring arable sites, with depth profiles differing in SOC stocks: One Colluvic Cambisol (Cam) with high SOC contents (8-12 g kg-1) throughout the profile and one Haplic Luvisol (Luv) with low SOC contents (3-4 g kg-1) below 30 cm depth. The first experiment was designed to gain more knowledge regarding the microbial community and its influence on carbon sequestration in subsoil. Soil samples were taken at four different depths on the two sites. Microbial biomass C (MBC) was determined to identify depth gradients in relation to the natural C availability. Bacterial and fungal residues as well as ergosterol were determined to quantify changes in the in the microbial community composition. Multi-substrate-induced-respiration (MSIR) was used to identify shifts in functional diversity of the microbial community. The MSIR revealed that substrate use in subsoil differed significantly from that in topsoil and also differed highly between the two subsoils, indicating a strong influence of resource limitations on microbial substrate use. Amino sugar analysis and the ratio of ergosterol to microbial biomass C showed that fungal dominance decreased with depth. The results clearly demonstrated that microbial parameters changed with depth according to substrate availability. The second experiment was an incubation experiment using subsoil gas conditions with and without the addition of C4 plant residues. Soil samples were taken from topsoil and subsoil of the two sites. SOC losses during the incubation, were not influenced by the subsoil gas conditions. Plant-derived C losses were generally stronger in the Cam (7.5 mg g-1), especially at subsoil gas conditions, than in the Luv (7.0 mg g-1). Subsoil gas conditions had no general effects on microbial measures with and without plant residue addition. However, the contribution of plant-derived MBC to total MBC was significantly reduced at subsoil gas conditions. This lead to the conclusion that subsoil gas conditions alter the metabolism of microorganisms but not the degradation of added plant residues is general. The third experiment was a field experiment carried out for two years. Mesh bags containing original soil material and maize root residues (C4 plant) were buried at three different depths at the two sites. The recovery of the soilbags took place 12, 18, and 24 months after burial. We determined the effects of these treatments on SOC, density fractions, and MBC. The mean residence time for maize-derived C was similar at all depths and both sites (403 d). MBC increased to a similar extent (2.5 fold) from the initial value to maximum value. This increase relied largely on the added maize root residues. However, there were clear differences visible in terms of the substrate use efficiency, which decreased with depth and was lower in the Luv than in the Cam. Hence freshly added plant material is highly accessible to microorganisms in subsoil and therefore equally degraded at both sites and depths, but its metabolic use was determined by the legacy of soil properties. These findings provide strong evidence that resource availability from autochthonous SOM as well as from added plant residues have a strong influence on the microbial community and its use of different substrates. However, under all of the applied conditions there was no evidence that complex substrates, i.e. plant residues, were less degraded in subsoil than in topsoil.
Resumo:
Changes in soil sulfur (S) fractions were assessed in oil palm and food garden land use systems developed on forest vegetation in humid tropical areas of Popondetta in northern Province. The study tested a hypothesis that S in food gardens are limiting nutrient factor and are significantly lower than in plantations and forests. Subsistence food gardens are under long-term slash and burn practice of cropping and such practice is expected to accelerate loss of biomass S from the ecosystem. From each land use, surface soil (0–15 cm) samples were characterised and further pseudocomplete fractionated for S. Conversion of forest to oil palm production decreased (p<0.001) soil pH and electrical conductivity values. The reserve S fraction in soil increased significantly (p<0.05) due to oil palm production ( 28 %) and food gardening activity (∼ 54 %). However, plant available SO42--S was below 15 mg kg^(−1) in the food garden soils and foliar samples of sweet potato crop indicating deficiency of plant available S. Soil organic carbon content (OC) was positively and significantly correlated to total S content (r=0.533; p<0.001) among the land use systems. Thus, crop management practices that affect OC status of the soils would potentially affect the S availability in soils. The possible changes in the chemical nature of mineralisable organic S compounds leading to enhanced mineralisation and leaching losses could be the reasons for the deficiency of S in the food garden soils. The results of this study conclude that long-term subsistence food gardening activity enriched top soils with reserve S or total S content at the expense of soluble S fraction. The subsistence cropping practices such as biomass burning in food gardens and reduced fallow periods are apparently threatening food security of oil palm households. Improved soil OC management strategies such as avoiding burning of fallow vegetation, improved fallows, mulching with fallow biomass, use of manures and S containing fertilisers must be promoted to sustain food security in smallholder oil palm system.
Resumo:
To increase the organic matter (OM) content in the soil is one main goal in arable soil management. The adoption of tillage systems with reduced tillage depth and/or frequency (reduced tillage) or of no-tillage was found to increase the concentration of soil OM compared to conventional tillage (CT; ploughing to 20-30 cm). However, the underlying processes are not yet clear and are discussed contradictorily. So far, few investigations were conducted on tillage systems with a shallow tillage depth (minimum tillage = MT; maximum tillage depth of 10 cm). A better understanding of the interactions between MT implementation and changes in OM transformation in soils is essential in order to evaluate the possible contribution of MT to a sustainable management of arable soils. The objectives of the present thesis were (i) to compare OM concentrations, microbial biomass, water-stable aggregates, and particulate OM (POM) between CT and MT soils, (ii) to estimate the temporal variability of water-stable aggregate size classes occurring in the field and the dynamics of macroaggregate (>250 µm) formation and disruption under controlled conditions, (iii) to investigate whether a lower disruption or a higher formation rate accounts for a higher occurrence of macroaggregates under MT compared to CT, (iv) to determine which fraction is the major agent for storing the surplus of OM found under MT compared to CT, and (v) to observe the early OM transformation after residue incorporation in different tillage systems simulated. Two experimental sites (Garte-Süd and Hohes Feld) near Göttingen, Germany, were investigated. Soil type of both sites was a Haplic Luvisol. Since about 40 years, both sites receive MT by a rotary harrow (to 5-8 cm depth) and CT by a plough (to 25 cm depth). Surface soils (0-5 cm) and subsoils (10-20 cm) of two sampling dates (after fallow and directly after tillage) were investigated for concentrations of organic C (Corg) and total N (N), different water-stable aggregate size classes, different density fractions (for the sampling date after fallow only), microbial biomass, and for biochemically stabilized Corg and N (by acid hydrolysis; for the sampling date after tillage only). In addition, two laboratory incubations were performed under controlled conditions: Firstly, MT and CT soils were incubated (28 days at 22°C) as bulk soil and with destroyed macroaggregates in order to estimate the importance of macroaggregates for the physical protection of the very labile OM against mineralization. Secondly, in a microcosm experiment simulating MT and CT systems with soil <250 µm and with 15N and 13C labelled maize straw incorporated to different depths, the mineralization, the formation of new macroaggregates, and the partitioning of the recently added C and N were followed (28 days at 15°C). Forty years of MT regime led to higher concentrations of microbial biomass and of Corg and N compared to CT, especially in the surface soil. After fallow and directly after tillage, a higher proportion of water-stable macroaggregates rich in OM was found in the MT (36% and 66%, respectively) than in the CT (19% and 47%, respectively) surface soils of both sites (data shown are of the site Garte-Süd only). The subsoils followed the same trend. For the sampling date after fallow, no differences in the POM fractions were found but there was more OM associated to the mineral fraction detected in the MT soils. A large temporal variability was observed for the abundance of macroaggregates. In the field and in the microcosm simulations, macroaggregates were found to have a higher formation rate after the incorporation of residues under MT than under CT. Thus, the lower occurrence of macroaggregates in CT soils cannot be attributed to a higher disruption but to a lower formation rate. A higher rate of macroaggregate formation in MT soils may be due to (i) the higher concentrated input of residues in the surface soil and/or (ii) a higher abundance of fungal biomass in contrast to CT soils. Overall, as a location of storage of the surplus of OM detected under MT compared to CT, water-stable macroaggregates were found to play a key role. In the incubation experiment, macroaggregates were not found to protect the very labile OM against mineralization. Anyway, the surplus of OM detected after tillage in the MT soil was biochemically degradable. MT simulations in the microcosm experiment showed a lower specific respiration and a less efficient translocation of recently added residues than the CT simulations. Differences in the early processes of OM translocation between CT and MT simulations were attributed to a higher residue to soil ratio and to a higher proportion of fungal biomass in the MT simulations. Overall, MT was found to have several beneficial effects on the soil structure and on the storage of OM, especially in the surface soil. Furthermore, it was concluded that the high concentration of residues in the surface soil of MT may alter the processes of storage and decomposition of OM. In further investigations, especially analysis of the residue-soil-interface and of effects of the depth of residue incorporation should be emphasised. Moreover, further evidence is needed on differences in the microbial community between CT and MT soils.
Resumo:
An improved understanding of soil organic carbon (Corg) dynamics in interaction with the mechanisms of soil structure formation is important in terms of sustainable agriculture and reduction of environmental costs of agricultural ecosystems. However, information on physical and chemical processes influencing formation and stabilization of water stable aggregates in association with Corg sequestration is scarce. Long term soil experiments are important in evaluating open questions about management induced effects on soil Corg dynamics in interaction with soil structure formation. The objectives of the present thesis were: (i) to determine the long term impacts of different tillage treatments on the interaction between macro aggregation (>250 µm) and light fraction (LF) distribution and on C sequestration in plots differing in soil texture and climatic conditions. (ii) to determine the impact of different tillage treatments on temporal changes in the size distribution of water stable aggregates and on macro aggregate turnover. (iii) to evaluate the macro aggregate rebuilding in soils with varying initial Corg contents, organic matter (OM) amendments and clay contents in a short term incubation experiment. Soil samples were taken in 0-5 cm, 5-25 cm and 25-40 cm depth from up to four commercially used fields located in arable loess regions of eastern and southern Germany after 18-25 years of different tillage treatments with almost identical experimental setups per site. At each site, one large field with spatially homogenous soil properties was divided into three plots. One of the following three tillage treatments was carried in each plot: (i) Conventional tillage (CT) with annual mouldboard ploughing to 25-30 cm (ii) mulch tillage (MT) with a cultivator or disc harrow 10-15 cm deep, and (iii) no tillage (NT) with direct drilling. The crop rotation at each site consisted of sugar beet (Beta vulgaris L.) - winter wheat (Triticum aestivum L.) - winter wheat. Crop residues were left on the field and crop management was carried out following the regional standards of agricultural practice. To investigate the above mentioned research objectives, three experiments were conducted: Experiment (i) was performed with soils sampled from four sites in April 2010 (wheat stand). Experiment (ii) was conducted with soils sampled from three sites in April 2010, September 2011 (after harvest or sugar beet stand), November 2011 (after tillage) and April 2012 (bare soil or wheat stand). An incubation study (experiment (iii)) was performed with soil sampled from one site in April 2010. Based on the aforementioned research objectives and experiments the main findings were: (i) Consistent results were found between the four long term tillage fields, varying in texture and climatic conditions. Correlation analysis of the yields of macro aggregate against the yields of free LF ( ≤1.8 g cm-3) and occluded LF, respectively, suggested that the effective litter translocation in higher soil depths and higher litter input under CT and MT compensated in the long term the higher physical impact by tillage equipment than under NT. The Corg stocks (kg Corg m−2) in 522 kg soil, based on the equivalent soil mass approach (CT: 0–40 cm, MT: 0–38 cm, NT: 0–36 cm) increased in the order CT (5.2) = NT (5.2) < MT (5.7). Significantly (p ≤ 0.05) highest Corg stocks under MT were probably a result of high crop yields in combination with reduced physical tillage impact and effective litter incorporation, resulting in a Corg sequestration rate of 31 g C-2 m-2 yr-1. (ii) Significantly higher yields of macro aggregates (g kg-2 soil) under NT (732-777) and MT (680-726) than under CT (542-631) were generally restricted to the 0-5 cm sampling depth for all sampling dates. Temporal changes on aggregate size distribution were only small and no tillage induced net effect was detectable. Thus, we assume that the physical impact by tillage equipment was only small or the impact was compensated by a higher soil mixing and effective litter translocation into higher soil depths under CT, which probably resulted in a high re aggregation. (iii) The short term incubation study showed that macro aggregate yields (g kg-2 soil) were higher after 28 days in soils receiving OM (121.4-363.0) than in the control soils (22.0-52.0), accompanied by higher contents of microbial biomass carbon and ergosterol. Highest soil respiration rates after OM amendments within the first three days of incubation indicated that macro aggregate formation is a fast process. Most of the rebuilt macro aggregates were formed within the first seven days of incubation (42-75%). Nevertheless, it was ongoing throughout the entire 28 days of incubation, which was indicated by higher soil respiration rates at the end of the incubation period in OM amended soils than in the control soils. At the same time, decreasing carbon contents within macro aggregates over time indicated that newly occluded OM within the rebuilt macro aggregates served as Corg source for microbial biomass. The different clay contents played only minor role in macro aggregate formation under the particular conditions of the incubation study. Overall, no net changes on macro aggregation were identified in the short term. Furthermore, no indications for an effective Corg sequestration on the long term under NT in comparison to CT were found. The interaction of soil disturbance, litter distribution and the fast re aggregation suggested that a distinct steady state per tillage treatment in terms of soil aggregation was established. However, continuous application of MT with a combination of reduced physical tillage impact and effective litter incorporation may offer some potential in improving the soil structure and may therefore prevent incorporated LF from rapid decomposition and result in a higher C sequestration on the long term.
Resumo:
Agricultural intensification has a strong impact on level of soil organic matter (SOM), microbial biomass stocks and microbial community structure in agro-ecosystems. The size of the microbial necromass C pool could be about 40 times that of the living microbial biomass C pool in soils. Due to the specificity, amino sugar analysis gives more important information on the relative contribution of fungal and bacterial residues to C sequestration potential of soils. Meanwhile, the relationship between microbial biomass and microbial necromass in soil and its ecological significance on SOM are not fully understood and likely to be very complex in grassland soils. This thesis focuses on the effects of tillage, grassland conversion intensities and fertilisation on microbial biomass, residues and community structure. The combined analyses of microbial biomass and residue formation of both fungi and bacteria provided a unique opportunity to study the effect of tillage, grassland conversion and fertilisation on soil microbial dynamics. In top soil at 0-30 cm layer, a reduction in tillage intensity by the GRT and NT treatments increased the accumulation of saprotrophic fungi in comparison with the MBT treatment. In contrast, the GRT and NT treatments promoted AMF at the expense of saprotrophic fungi in the bottom soil layer at 30-40 cm depth. The negative relationship between the ergosterol to microbial biomass C ratio and the fungal C to bacterial C ratio points to the importance of the relationship between saprotrophic fungi and biotrophic AMF for tillage-induced changes in microbial turnover of SOC. One-season cultivation of winter wheat with two tillage events led to a significant loss in SOC and microbial biomass C stocks at 0-40 cm depth in comparison with the permanent grassland, even 5 years after the tillage event. However, the tillage induced loss in microbial biomass C was roughly 40% less in the long-term than in the short-term of the current experiment, indicating a recovery process during grassland restoration. In general, mould board tillage and grassland conversion to maize monoculture promoted saprotrophic fungi at the expense of biotrophic AMF and bacteria compared to undisturbed grassland soils. Slurry application promoted bacterial residues as indicated by the decreases in both, the ergosterol to microbial biomass C ratio and the fungal C to bacterial C ratio. In addition, the lost microbial functional diversity due to tillage and maize monoculture was restored by slurry application both in arable and grassland soils. I conclude that the microbial biomass C/S ratio can be used as an additional indicator for a shift in microbial community. The strong relationships between microbial biomass and necromass indices points to the importance of saprotrophic fungi and biotrophic AMF for agricultural management induced effects on microbial turnover and ecosystem C storage. Quantitative information on exact biomass estimates of these two important fungal groups in soil is inevitably necessary to understand their different roles in SOM dynamics.