3 resultados para SUPER-LATTICE
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
Während der letzten 20 Jahre hat sich das Periodensystem bis zu den Elementen 114 und 116 erweitert. Diese sind kernphysikalisch nachgewiesen, so dass jetzt die chemische Untersuchung an erster Selle steht. Nachdem sich das Periodensystem bis zum Element 108 so verhält, wie man es dem Periodensystem nach annimmt, wird in dieser Arbeit die Chemie des Elements 112 untersucht. Dabei geht es um die Adsorptionsenergie auf einer Gold-Ober fläche, weil dies der physikalisch/chemische Prozess ist, der bei der Analyse angewandt wird. Die Methode, die in dieser Arbeit angwandt wird, ist die relativistische Dichtefunktionalmethode. Im ersten Teil wird das Vielkörperproblem in allgemeiner Form behandelt, und im zweiten die grundlegenden Eigenschaften und Formulierungen der Dichtefunktionaltheorie. Die Arbeit beschreibt zwei prinzipiell unterschiedliche Ansätze, wie die Adsorptionsenergie berechnet werden kann. Zum einen ist es die sogenannte Clustermethode, bei der ein Atom auf ein relativ kleines Cluster aufgebracht und dessen Adsorptionsenergie berechnet wird. Wenn es gelingt, die Konvergenz mit der Größe des Clusters zu erreichen, sollte dies zu einem Wert für die Adsorptionsenergie führen. Leider zeigt sich in den Rechnungen, dass aufgrund des zeitlichen Aufwandes die Konvergenz für die Clusterrechnungen nicht erreicht wird. Es werden sehr ausführlich die drei verschiedenen Adsorptionsplätze, die Top-, die Brücken- und die Muldenposition, berechnet. Sehr viel mehr Erfolg erzielt man mit der Einbettungsmethode, bei der ein kleiner Cluster von vielen weiteren Atomen an den Positionen, die sie im Festkörpers auf die Adsorptionsenergie soweit sichergestellt ist, dass physikalisch-chemisch gute Ergebnisse erzielt werden. Alle hier gennanten Rechnungen sowohl mit der Cluster- wie mit der Einbettungsmethode verlangen sehr, sehr lange Rechenzeiten, die, wie oben bereits erwähnt, nicht zu einer Konvergenz für die Clusterrechnungen ausreichten. In der Arbeit wird bei allen Rechnungen sehr detailliert auf die Abhängigkeit von den möglichen Basissätzen eingegangen, die ebenfalls in entscheidender Weise zur Länge und Qualität der Rechnungen beitragen. Die auskonvergierten Rechnungen werden in der Form von Potentialkurven, Density of States (DOS), Overlap Populations sowie Partial Crystal Overlap Populations analysiert. Im Ergebnis zeigt sich, dass die Adsoptionsenergie für das Element 112 auf einer Goldoberfläche ca. 0.2 eV niedriger ist als die Adsorption von Quecksilber auf der gleichen Ober fläche. Mit diesem Ergebnis haben die experimentellen Kernchemiker einen Wert an der Hand, mit dem sie eine Anhaltspunkt haben, wo sie bei den Messungen die wenigen zu erwartenden Ereignisse finden können.
Resumo:
Mesh generation is an important step inmany numerical methods.We present the “HierarchicalGraphMeshing” (HGM)method as a novel approach to mesh generation, based on algebraic graph theory.The HGM method can be used to systematically construct configurations exhibiting multiple hierarchies and complex symmetry characteristics. The hierarchical description of structures provided by the HGM method can be exploited to increase the efficiency of multiscale and multigrid methods. In this paper, the HGMmethod is employed for the systematic construction of super carbon nanotubes of arbitrary order, which present a pertinent example of structurally and geometrically complex, yet highly regular, structures. The HGMalgorithm is computationally efficient and exhibits good scaling characteristics. In particular, it scales linearly for super carbon nanotube structures and is working much faster than geometry-based methods employing neighborhood search algorithms. Its modular character makes it conducive to automatization. For the generation of a mesh, the information about the geometry of the structure in a given configuration is added in a way that relates geometric symmetries to structural symmetries. The intrinsically hierarchic description of the resulting mesh greatly reduces the effort of determining mesh hierarchies for multigrid and multiscale applications and helps to exploit symmetry-related methods in the mechanical analysis of complex structures.