19 resultados para SILICON MICRONEEDLES

em Universitätsbibliothek Kassel, Universität Kassel, Germany


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on the observation of K\alpha\alpha X-rays of Si, produced in collisions of 15-28 MeV Si projectiles with various target atoms in the range Z =6 to 29. Energy shifts of X-rays were measured and are compared with theoretical predictions. Cross section ratios for emission of K\alpha\alpha and K\alpha radiation are given.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main focus and concerns of this PhD thesis is the growth of III-V semiconductor nanostructures (Quantum dots (QDs) and quantum dashes) on silicon substrates using molecular beam epitaxy (MBE) technique. The investigation of influence of the major growth parameters on their basic properties (density, geometry, composition, size etc.) and the systematic characterization of their structural and optical properties are the core of the research work. The monolithic integration of III-V optoelectronic devices with silicon electronic circuits could bring enormous prospect for the existing semiconductor technology. Our challenging approach is to combine the superior passive optical properties of silicon with the superior optical emission properties of III-V material by reducing the amount of III-V materials to the very limit of the active region. Different heteroepitaxial integration approaches have been investigated to overcome the materials issues between III-V and Si. However, this include the self-assembled growth of InAs and InGaAs QDs in silicon and GaAx matrices directly on flat silicon substrate, sitecontrolled growth of (GaAs/In0,15Ga0,85As/GaAs) QDs on pre-patterned Si substrate and the direct growth of GaP on Si using migration enhanced epitaxy (MEE) and MBE growth modes. An efficient ex-situ-buffered HF (BHF) and in-situ surface cleaning sequence based on atomic hydrogen (AH) cleaning at 500 °C combined with thermal oxide desorption within a temperature range of 700-900 °C has been established. The removal of oxide desorption was confirmed by semicircular streaky reflection high energy electron diffraction (RHEED) patterns indicating a 2D smooth surface construction prior to the MBE growth. The evolution of size, density and shape of the QDs are ex-situ characterized by atomic-force microscopy (AFM) and transmission electron microscopy (TEM). The InAs QDs density is strongly increased from 108 to 1011 cm-2 at V/III ratios in the range of 15-35 (beam equivalent pressure values). InAs QD formations are not observed at temperatures of 500 °C and above. Growth experiments on (111) substrates show orientation dependent QD formation behaviour. A significant shape and size transition with elongated InAs quantum dots and dashes has been observed on (111) orientation and at higher Indium-growth rate of 0.3 ML/s. The 2D strain mapping derived from high-resolution TEM of InAs QDs embedded in silicon matrix confirmed semi-coherent and fully relaxed QDs embedded in defectfree silicon matrix. The strain relaxation is released by dislocation loops exclusively localized along the InAs/Si interfaces and partial dislocations with stacking faults inside the InAs clusters. The site controlled growth of GaAs/In0,15Ga0,85As/GaAs nanostructures has been demonstrated for the first time with 1 μm spacing and very low nominal deposition thicknesses, directly on pre-patterned Si without the use of SiO2 mask. Thin planar GaP layer was successfully grown through migration enhanced epitaxy (MEE) to initiate a planar GaP wetting layer at the polar/non-polar interface, which work as a virtual GaP substrate, for the GaP-MBE subsequently growth on the GaP-MEE layer with total thickness of 50 nm. The best root mean square (RMS) roughness value was as good as 1.3 nm. However, these results are highly encouraging for the realization of III-V optical devices on silicon for potential applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A femtosecond-laser pulse can induce ultrafast nonthermal melting of various materials along pathways that are inaccessible under thermodynamic conditions, but it is not known whether there is any structural modification at fluences just below the melting threshold. Here, we show for silicon that in this regime the room-temperature phonons become thermally squeezed, which is a process that has not been reported before in this material. We find that the origin of this effect is the sudden femtosecond-laser-induced softening of interatomic bonds, which can also be described in terms of a modification of the potential energy surface. We further find in ab initio molecular-dynamics simulations on laser-excited potential energy surfaces that the atoms move in the same directions during the first stages of nonthermal melting and thermal phonon squeezing. Our results demonstrate how femtosecond-laser-induced coherent fluctuations precurse complete atomic disordering as a function of fluence. The common underlying bond-softening mechanism indicates that this relation between thermal squeezing and nonthermal melting is not material specific.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, we present an atomistic-continuum model for simulations of ultrafast laser-induced melting processes in semiconductors on the example of silicon. The kinetics of transient non-equilibrium phase transition mechanisms is addressed with MD method on the atomic level, whereas the laser light absorption, strong generated electron-phonon nonequilibrium, fast heat conduction, and photo-excited free carrier diffusion are accounted for with a continuum TTM-like model (called nTTM). First, we independently consider the applications of nTTM and MD for the description of silicon, and then construct the combined MD-nTTM model. Its development and thorough testing is followed by a comprehensive computational study of fast nonequilibrium processes induced in silicon by an ultrashort laser irradiation. The new model allowed to investigate the effect of laser-induced pressure and temperature of the lattice on the melting kinetics. Two competing melting mechanisms, heterogeneous and homogeneous, were identified in our big-scale simulations. Apart from the classical heterogeneous melting mechanism, the nucleation of the liquid phase homogeneously inside the material significantly contributes to the melting process. The simulations showed, that due to the open diamond structure of the crystal, the laser-generated internal compressive stresses reduce the crystal stability against the homogeneous melting. Consequently, the latter can take a massive character within several picoseconds upon the laser heating. Due to the large negative volume of melting of silicon, the material contracts upon the phase transition, relaxes the compressive stresses, and the subsequent melting proceeds heterogeneously until the excess of thermal energy is consumed. A series of simulations for a range of absorbed fluences allowed us to find the threshold fluence value at which homogeneous liquid nucleation starts contributing to the classical heterogeneous propagation of the solid-liquid interface. A series of simulations for a range of the material thicknesses showed that the sample width we chosen in our simulations (800 nm) corresponds to a thick sample. Additionally, in order to support the main conclusions, the results were verified for a different interatomic potential. Possible improvements of the model to account for nonthermal effects are discussed and certain restrictions on the suitable interatomic potentials are found. As a first step towards the inclusion of these effects into MD-nTTM, we performed nanometer-scale MD simulations with a new interatomic potential, designed to reproduce ab initio calculations at the laser-induced electronic temperature of 18946 K. The simulations demonstrated that, similarly to thermal melting, nonthermal phase transition occurs through nucleation. A series of simulations showed that higher (lower) initial pressure reinforces (hinders) the creation and the growth of nonthermal liquid nuclei. For the example of Si, the laser melting kinetics of semiconductors was found to be noticeably different from that of metals with a face-centered cubic crystal structure. The results of this study, therefore, have important implications for interpretation of experimental data on the kinetics of melting process of semiconductors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The rapid growth of the optical communication branches and the enormous demand for more bandwidth require novel networks such as dense wavelength division multiplexing (DWDM). These networks enable higher bitrate transmission using the existing optical fibers. Micromechanically tunable optical microcavity devices like VCSELs, Fabry-Pérot filters and photodetectors are core components of these novel DWDM systems. Several air-gap based tunable devices were successfully implemented in the last years. Even though these concepts are very promising, two main disadvantages are still remaining. On the one hand, the high fabrication and integration cost and on the other hand the undesired adverse buckling of the suspended membranes. This thesis addresses these two problems and consists of two main parts: • PECVD dielectric material investigation and stress control resulting in membranes shape engineering. • Implementation and characterization of novel tunable optical devices with tailored shapes of the suspended membranes. For this purposes, low-cost PECVD technology is investigated and developed in detail. The macro- and microstress of silicon nitride and silicon dioxide are controlled over a wide range. Furthermore, the effect of stress on the optical and mechanical properties of the suspended membranes and on the microcavities is evaluated. Various membrane shapes (concave, convex and planar) with several radii of curvature are fabricated. Using this resonator shape engineering, microcavity devices such as non tunable and tunable Fabry-Pérot filters, VCSELs and PIN photodetectors are succesfully implemented. The fabricated Fabry-Pérot filters cover a spectral range of over 200nm and show resonance linewidths down to 1.5nm. By varying the stress distribution across the vertical direction within a DBR, the shape and the radius of curvature of the top membrane are explicitely tailored. By adjusting the incoming light beam waist to the curvature, the fundamental resonant mode is supported and the higher order ones are suppressed. For instance, a tunable VCSEL with 26 nm tuning range, 400µW maximal output power, 47nm free spectral range and over 57dB side mode suppresion ratio (SMSR) is demonstrated. Other technologies, such as introducing light emitting organic materials in microcavities are also investigated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mikrooptische Filter sind heutzutage in vielen Bereichen in der Telekommunikation unersetzlich. Wichtige Einsatzgebiete sind aber auch spektroskopische Systeme in der Medizin-, Prozess- und Umwelttechnik. Diese Arbeit befasst sich mit der Technologieentwicklung und Herstellung von luftspaltbasierenden, vertikal auf einem Substrat angeordneten, oberflächenmikromechanisch hergestellten Fabry-Perot-Filtern. Es werden zwei verschiedene Filtervarianten, basierend auf zwei verschiedenen Materialsystemen, ausführlich untersucht. Zum einen handelt es sich dabei um die Weiterentwicklung von kontinuierlich mikromechanisch durchstimmbaren InP / Luftspaltfiltern; zum anderen werden neuartige, kostengünstige Siliziumnitrid / Luftspaltfilter wissenschaftlich behandelt. Der Inhalt der Arbeit ist so gegliedert, dass nach einer Einleitung mit Vergleichen zu Arbeiten und Ergebnissen anderer Forschergruppen weltweit, zunächst einige theoretische Grundlagen zur Berechnung der spektralen Reflektivität und Transmission von beliebigen optischen Schichtanordnungen aufgezeigt werden. Auß erdem wird ein kurzer theoretischer Ü berblick zu wichtigen Eigenschaften von Fabry-Perot-Filtern sowie der Möglichkeit einer mikromechanischen Durchstimmbarkeit gegeben. Daran anschließ end folgt ein Kapitel, welches sich den grundlegenden technologischen Aspekten der Herstellung von luftspaltbasierenden Filtern widmet. Es wird ein Zusammenhang zu wichtigen Referenzarbeiten hergestellt, auf denen diverse Weiterentwicklungen dieser Arbeit basieren. Die beiden folgenden Kapitel erläutern dann ausführlich das Design, die Herstellung und die Charakterisierung der beiden oben erwähnten Filtervarianten. Abgesehen von der vorangehenden Epitaxie von InP / GaInAs Schichten, ist die Herstellung der InP / Luftspaltfilter komplett im Institut durchgeführt worden. Die Herstellungsschritte sind ausführlich in der Arbeit erläutert, wobei ein Schwerpunktthema das trockenchemische Ä tzen von InP sowie GaInAs, welches als Opferschichtmaterial für die Herstellung der Luftspalte genutzt wurde, behandelt. Im Verlauf der wissenschaftlichen Arbeit konnten sehr wichtige technische Verbesserungen entwickelt und eingesetzt werden, welche zu einer effizienteren technologischen Herstellung der Filter führten und in der vorliegenden Niederschrift ausführlich dokumentiert sind. Die hergestellten, für einen Einsatz in der optischen Telekommunikation entworfenen, elektrostatisch aktuierbaren Filter sind aus zwei luftspaltbasierenden Braggspiegeln aufgebaut, welche wiederum jeweils 3 InP-Schichten von (je nach Design) 357nm bzw. 367nm Dicke aufweisen. Die Filter bestehen aus im definierten Abstand parallel übereinander angeordneten Membranen, die über Verbindungsbrücken unterschiedlicher Anzahl und Länge an Haltepfosten befestigt sind. Da die mit 357nm bzw. 367nm vergleichsweise sehr dünnen Schichten freitragende Konstrukte mit bis zu 140 nm Länge bilden, aber trotzdem Positionsgenauigkeiten im nm-Bereich einhalten müssen, handelt es sich hierbei um sehr anspruchsvolle mikromechanische Bauelemente. Um den Einfluss der zahlreichen geometrischen Strukturparameter studieren zu können, wurden verschiedene laterale Filterdesigns implementiert. Mit den realisierten Filter konnte ein enorm weiter spektraler Abstimmbereich erzielt werden. Je nach lateralem Design wurden internationale Bestwerte für durchstimmbare Fabry-Perot-Filter von mehr als 140nm erreicht. Die Abstimmung konnte dabei kontinuierlich mit einer angelegten Spannung von nur wenigen Volt durchgeführt werden. Im Vergleich zu früher berichteten Ergebnissen konnten damit sowohl die Wellenlängenabstimmung als auch die dafür benötigte Abstimmungsspannung signifikant verbessert werden. Durch den hohen Brechungsindexkontrast und die geringe Schichtdicke zeigen die Filter ein vorteilhaftes, extrem weites Stopband in der Größ enordnung um 550nm. Die gewählten, sehr kurzen Kavitätslängen ermöglichen einen freien Spektralbereich des Filters welcher ebenfalls in diesen Größ enordnungen liegt, so dass ein weiter spektraler Einsatzbereich ermöglicht wird. Während der Arbeit zeigte sich, dass Verspannungen in den freitragenden InPSchichten die Funktionsweise der mikrooptischen Filter stark beeinflussen bzw. behindern. Insbesondere eine Unterätzung der Haltepfosten und die daraus resultierende Verbiegung der Ecken an denen sich die Verbindungsbrücken befinden, führte zu enormen vertikalen Membranverschiebungen, welche die Filtereigenschaften verändern. Um optimale Ergebnisse zu erreichen, muss eine weitere Verbesserung der Epitaxie erfolgen. Jedoch konnten durch den zusätzlichen Einsatz einer speziellen Schutzmaske die Unterätzung der Haltepfosten und damit starke vertikale Verformungen reduziert werden. Die aus der Verspannung resultierenden Verformungen und die Reaktion einzelner freistehender InP Schichten auf eine angelegte Gleich- oder Wechselspannung wurde detailliert untersucht. Mittels Weisslichtinterferometrie wurden lateral identische Strukturen verglichen, die aus unterschiedlich dicken InP-Schichten (357nm bzw. 1065nm) bestehen. Einen weiteren Hauptteil der Arbeit stellen Siliziumnitrid / Luftspaltfilter dar, welche auf einem neuen, im Rahmen dieser Dissertation entwickelten, technologischen Ansatz basieren. Die Filter bestehen aus zwei Braggspiegeln, die jeweils aus fünf 590nm dicken, freistehenden Siliziumnitridschichten aufgebaut sind und einem Abstand von 390nm untereinander aufweisen. Die Filter wurden auf Glassubstraten hergestellt. Der Herstellungsprozess ist jedoch auch mit vielen anderen Materialien oder Prozessen kompatibel, so dass z.B. eine Integration mit anderen Bauelemente relativ leicht möglich ist. Die Prozesse dieser ebenfalls oberflächenmikromechanisch hergestellten Filter wurden konsequent auf niedrige Herstellungskosten optimiert. Als Opferschichtmaterial wurde hier amorph abgeschiedenes Silizium verwendet. Der Herstellungsprozess beinhaltet die Abscheidung verspannungsoptimierter Schichten (Silizium und Siliziumnitrid) mittels PECVD, die laterale Strukturierung per reaktiven Ionenätzen mit den Gasen SF6 / CHF3 / Ar sowie Fotolack als Maske, die nasschemische Unterätzung der Opferschichten mittels KOH und das Kritisch-Punkt-Trocken der Proben. Die Ergebnisse der optischen Charakterisierung der Filter zeigen eine hohe Ü bereinstimmung zwischen den experimentell ermittelten Daten und den korrespondierenden theoretischen Modellrechnungen. Weisslichtinterferometermessungen der freigeätzten Strukturen zeigen ebene Filterschichten und bestätigen die hohe vertikale Positioniergenauigkeit, die mit diesem technologischen Ansatz erreicht werden kann.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Den Schwerpunkt dieser Dissertation bildet zum einen die Entwicklung eines theoretischen Modells zur Beschreibung des Strukturbildungsprozesses in organisch/anorganischen Doppelschichtsystemen und zum anderen die Untersuchung der Übertragbarkeit dieser theoretisch gewonnenen Ergebnisse auf reale Systeme. Hierzu dienen systematische experimentelle Untersuchungen dieses Phänomens an einem Testsystem. Der Bereich der selbstorganisierenden Systeme ist von hohem wissenschaftlichen Interesse, erlaubt er doch die Realisierung von Strukturen, die nicht den Begrenzungen heutiger Techniken unterliegen, wie etwa der Beugung bei lithographischen Verfahren. Darüber hinaus liefert ein vertieftes Verständnis des Strukturbildungsprozesses auch eine Möglichkeit, im Falle entsprechender technischer Anwendungen Instabilitäten innerhalb der Schichtsysteme zu verhindern und somit einer Degradation der Bauteile entgegenzuwirken. Im theoretischen Teil der Arbeit konnte ein Modell im Rahmen der klassischen Elastizitätstheorie entwickelt werden, mit dessen Hilfe sich die Entstehung der Strukturen in Doppelschichtsystemen verstehen läßt. Der hier gefundene funktionale Zusammenhang zwischen der Periode der Strukturen und dem Verhältnis der Schichtdicken von organischer und anorganischer Schicht, wird durch die experimentellen Ergebnisse sehr gut bestätigt. Die Ergebnisse zeigen, daß es technologisch möglich ist, über die Vorgabe der Schichtdicke in einem Materialsystem die Periodizität der entstehenden Strukturen vorzugeben. Darüber hinaus liefert das vorgestellte Modell eine Stabilitätsbedingung für die Schichtsysteme, die es ermöglicht, zu jedem Zeitpunkt die dominierende Mode zu identifizieren. Ein Schwerpunkt der experimentellen Untersuchungen dieser Arbeit liegt auf der Strukturbildung innerhalb der Schichtsysteme. Das Testsystem wurde durch Aufbringen einer organischen Schicht - eines sog. Molekularen Glases - auf ein Glassubstrat realisiert, als Deckschicht diente eine Siliziumnitrid-Schicht. Es wurden Proben mit variierenden Schichtdicken kontrolliert erwärmt. Sobald die Temperatur des Schichtsystems in der Größenordnung der Glasübergangstemperatur des jeweiligen organischen Materials lag, fand spontan eine Strukturbildung auf Grund einer Spannungsrelaxation statt. Es ließen sich durch die Wahl einer entsprechenden Heizquelle unterschiedliche Strukturen realisieren. Bei Verwendung eines gepulsten Lasers, also einer kreisförmigen Wärmequelle, ordneten sich die Strukturen konzentrisch an, wohingegen sich ihre Ausrichtung bei Verwendung einer flächenhaften Heizplatte statistisch verteilte. Auffällig bei allen Strukturen war eine starke Modulation der Oberfläche. Ferner konnte in der Arbeit gezeigt werden, daß sich durch eine gezielte Veränderung der Spannungsverteilung innerhalb der Schichtsysteme die Ausrichtung der Strukturen (gezielt) manipulieren ließen. Unabhängig davon erlaubte die Variation der Schichtdicken die Realisierung von Strukturen mit einer Periodizität im Bereich von einigen µm bis hinunter zu etwa 200 nm. Die Kontrolle über die Ausrichtung und die Periodizität ist Grundvoraussetzung für eine zukünftige technologische Nutzung des Effektes zur kontrollierten Herstellung von Mikro- bzw. Nanostrukturen. Darüber hinaus konnte ein zunächst von der Strukturbildung unabhängiges Konzept eines aktiven Sensors für die optische Raster-Nahfeld-Mikroskopie vorgestellt werden, das das oben beschriebene System, bestehend aus einem fluoreszierenden Molekularen Glas und einer Siliziumnitrid-Deckschicht, verwendet. Erste theoretische und experimentelle Ergebnisse zeigen das technologische Potential dieses Sensortyps.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Der pH-Wert stellt in der Chemie, Physik, Biologie, Pharmazie und Medizin eine wichtige Meßgröße dar, da eine Vielzahl von Reaktionen durch den pH-Wert bestimmt wird. In der Regel werden zur pH-Wert-Messung Glaselektroden eingesetzt. Hierbei konnte der pH-sensitive Bereich zwar bis auf einige Mikrometer reduziert werden, aber die Gesamtab-messungen betragen immer noch 15-20 cm. Mit der Einführung miniaturisierter Reaktionsgefäße ist daher der Bedarf an miniaturisierten Sensoren enorm gestiegen. Um in solchen Gefäßen Reaktionsparameter wie z. B. den pH-Wert zu kontrollieren, müssen die Gesamtabmessungen der Sensoren verringert werden. Dies lässt sich mit Hilfe der Mikrostrukturtechnik von Silizium realisieren. Hiermit lassen sich Strukturen und ganze Systeme bis in den Nanometerbereich herstellen. Basierend auf Silizium und Gold als Elektrodenmaterial wurden im Rahmen dieser Arbeit verschiedene Interdigitalstrukturen hergestellt. Um diese Strukturen zur pH-Wert-Messungen einsetzen zu können, müssen sie mit einer pH-sensitiven Schicht versehen werden. Hierbei wurde Polyanilin, ein intrinsisch leitendes Polymer, aufgrund seine pH-abhängigen elektrischen und optischen Verhaltens eingesetzt. Die Beschichtung dieser Sensoren mit Polyanilin erfolgte vorwiegend elektrochemisch mit Hilfe der Zyklovoltammetrie. Neben der Herstellung reiner Polyanilinfilme wurden auch Kopolymerisationen von Anilin und seinen entsprechenden Aminobenzoesäure- bzw. Aminobenzensulfonsäurederivaten durchgeführt. Ergebnisse dazu werden vorgestellt und diskutiert. Zur Charakterisierung der resultierenden Polyanilin- und Kopolymerfilme auf den Inter-digitalstrukturen wurden mit Hilfe der ATR-FT-IR-Spektroskopie Spektren aufgenommen, die gezeigt und diskutiert werden. Eine elektrochemische Charakterisierung der Polymere erfolgte mittels der Zyklovoltammetrie. Die mit Polyanilin bzw. seinen Kopolymeren beschichteten Sensoren wurden dann für Widerstandsmessungen an den Polymerfilmen in wässrigen Medien eingesetzt. Polyanilin zeigt lediglich eine pH-Sensitivität in einem pH-Bereich von pH 2 bis pH 4. Durch den Einsatz der Kopolymere konnte dieser pH-sensitive Bereich jedoch bis zu einem pH-Wert von 10 ausgeweitet werden. Zur weiteren Miniaturisierung der Sensoren wurde das Konzept der interdigitalen Elektroden-paare auf Cantilever übertragen. Die pH-sensitive Zone konnte dabei auf 500 µm2 bei einer Gesamtlänge des Sensors (Halter mit integriertem Cantilever) von 4 mm reduziert werden. Neben den elektrischen pH-abhängigen Eigenschaften können auch die optischen Eigen-schaften des Polyanilins zur pH-Detektion herangezogen werden. Diese wurden zunächst mit Hilfe der UV-VIS-Spektroskopie untersucht. Die erhaltenen Spektren werden gezeigt und kurz diskutiert. Mit Hilfe eines Raster-Sonden-Mikroskops (a-SNOM, Firma WITec) wurden Reflexionsmessungen an Polyanilinschichten durchgeführt. Zur weiteren Miniaturisierung wurden Siliziumdioxidhohlpyramiden (Basisfläche 400 µm2) mit Spitzenöffnungen in einem Bereich von 50-150 nm mit Polyanilin beschichtet. Auch hier sollten die optischen Eigenschaften des Polyanilins zur pH-Wert-Sensorik ausgenutzt werden. Es werden erste Messungen an diesen Strukturen in Transmission diskutiert.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Im Rahmen dieser Arbeit wurden magneto-optische Speicherschichten und ihre Kopplungen untereinander untersucht. Hierzu wurden zum Einen die für die magneto-optische Speichertechnologie "klassischen" Schichten aus RE/TM-Legierungen verwendet, zum Anderen aber auch erfolgreich Granate integriert, die bisher nicht in diesem Anwendungsgebiet verwendet wurden. Einleitend werden die magneto-optischen Verfahren, die resultierenden Anforderungen an die dünnen Schichten und die entsprechenden physikalischen Grundlagen diskutiert. Außerdem wird auf das Hochfrequenz-Sputtern von RE/TM-Legierungen eingegangen und die verwendeten magneto-optischen Messverfahren werden erläutert [Kap. 2 & 3]. Die Untersuchungen an RE/TM-Schichten bestätigen die aus der Literatur bekannten Eigenschaften. Sie lassen sich effektiv, und für magneto-optische Anwendungen geeignet, über RF-Sputtern herstellen. Die unmittelbaren Schicht-Parameter, wie Schichtdicke und Terbium-Konzentration, lassen sich über einfache Zusammenhänge einstellen. Da die Terbium-Konzentration eine Änderung der Kompensationstemperatur bewirkt, lässt sich diese mit Messungen am Kerr-Magnetometer überprüfen. Die für die Anwendung interessante senkrechte magnetische Anisotropie konnte ebenfalls mit den Herstellungsbedingungen verknüpft werden. Bei der Herstellung der Schichten auf einer glatten Glas-Oberfläche (Floatglas) zeigt die RE/TM-Schicht bereits in den ersten Lagen ein Wachstumsverhalten, das eine senkrechte Anisotropie bewirkt. Auf einer Quarzglas- oder Keramik-Oberfläche wachsen die ersten Lagen in einer durch das Substrat induzierten Struktur auf, danach ändert sich das Wachstumsverhalten stetig, bis eine senkrechte Anisotropie erreicht wird. Dieses Verhalten kann auch durch verschiedene Pufferschichten (Aluminium und Siliziumnitrid) nur unwesentlich beeinflusst werden [Kap. 5 & Kap. 6]. Bei der direkten Aufbringung von Doppelschichten, bestehend aus einer Auslese-Schicht (GdFeCo) auf einer Speicherschicht (TbFeCo), wurde die Austausch-Kopplung demonstriert. Die Ausleseschicht zeigt unterhalb der Kompensationstemperatur keine Kopplung an die Speicherschicht, während oberhalb der Kompensationstemperatur eine direkte Kopplung der Untergitter stattfindet. Daraus ergibt sich das für den MSR-Effekt erwünschte Maskierungsverhalten. Die vorher aus den Einzelschichten gewonnen Ergebnisse zu Kompensationstemperatur und Wachstumsverhalten konnten in den Doppelschichten wiedergefunden werden. Als Idealfall erweist sich hier die einfachste Struktur. Man bringt die Speicherschicht auf Floatglas auf und bedeckt diese direkt mit der Ausleseschicht [Kap. 7]. Weiterhin konnte gezeigt werden, dass es möglich ist, den Faraday-Effekt einer Granatschicht als verstärkendes Element zu nutzen. Im anwendungstauglichen, integrierten Schichtsystem konnten die kostengünstig, mit dem Sol-Gel-Verfahren produzierten, Granate die strukturellen Anforderungen nicht erfüllen, da sich während der Herstellung Risse und Löcher gebildet haben. Bei der experimentellen Realisierung mit einer einkristallinen Granatschicht und einer RE/TM-Schicht konnte die prinzipielle Eignung des Schichtsystems demonstriert werden [Kap. 8].

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In now-a-days semiconductor and MEMS technologies the photolithography is the working horse for fabrication of functional devices. The conventional way (so called Top-Down approach) of microstructuring starts with photolithography, followed by patterning the structures using etching, especially dry etching. The requirements for smaller and hence faster devices lead to decrease of the feature size to the range of several nanometers. However, the production of devices in this scale range needs photolithography equipment, which must overcome the diffraction limit. Therefore, new photolithography techniques have been recently developed, but they are rather expensive and restricted to plane surfaces. Recently a new route has been presented - so-called Bottom-Up approach - where from a single atom or a molecule it is possible to obtain functional devices. This creates new field - Nanotechnology - where one speaks about structures with dimensions 1 - 100 nm, and which has the possibility to replace the conventional photolithography concerning its integral part - the self-assembly. However, this technique requires additional and special equipment and therefore is not yet widely applicable. This work presents a general scheme for the fabrication of silicon and silicon dioxide structures with lateral dimensions of less than 100 nm that avoids high-resolution photolithography processes. For the self-aligned formation of extremely small openings in silicon dioxide layers at in depth sharpened surface structures, the angle dependent etching rate distribution of silicon dioxide against plasma etching with a fluorocarbon gas (CHF3) was exploited. Subsequent anisotropic plasma etching of the silicon substrate material through the perforated silicon dioxide masking layer results in high aspect ratio trenches of approximately the same lateral dimensions. The latter can be reduced and precisely adjusted between 0 and 200 nm by thermal oxidation of the silicon structures owing to the volume expansion of silicon during the oxidation. On the basis of this a technology for the fabrication of SNOM calibration standards is presented. Additionally so-formed trenches were used as a template for CVD deposition of diamond resulting in high aspect ratio diamond knife. A lithography-free method for production of periodic and nonperiodic surface structures using the angular dependence of the etching rate is also presented. It combines the self-assembly of masking particles with the conventional plasma etching techniques known from microelectromechanical system technology. The method is generally applicable to bulk as well as layered materials. In this work, layers of glass spheres of different diameters were assembled on the sample surface forming a mask against plasma etching. Silicon surface structures with periodicity of 500 nm and feature dimensions of 20 nm were produced in this way. Thermal oxidation of the so structured silicon substrate offers the capability to vary the fill factor of the periodic structure owing to the volume expansion during oxidation but also to define silicon dioxide surface structures by selective plasma etching. Similar structures can be simply obtained by structuring silicon dioxide layers on silicon. The method offers a simple route for bridging the Nano- and Microtechnology and moreover, an uncomplicated way for photonic crystal fabrication.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Scanning Probe Microscopy (SPM) has become of fundamental importance for research in area of micro and nano-technology. The continuous progress in these fields requires ultra sensitive measurements at high speed. The imaging speed limitation of the conventional Tapping Mode SPM is due to the actuation time constant of piezotube feedback loop that keeps the tapping amplitude constant. In order to avoid this limit a deflection sensor and an actuator have to be integrated into the cantilever. In this work has been demonstrated the possibility of realisation of piezoresistive cantilever with an embedded actuator. Piezoresistive detection provides a good alternative to the usual optical laser beam deflection technique. In frames of this thesis has been investigated and modelled the piezoresistive effect in bulk silicon (3D case) for both n- and p-type silicon. Moving towards ultra-sensitive measurements it is necessary to realize ultra-thin piezoresistors, which are well localized to the surface, where the stress magnitude is maximal. New physical effects such as quantum confinement which arise due to the scaling of the piezoresistor thickness was taken into account in order to model the piezoresistive effect and its modification in case of ultra-thin piezoresistor (2D case). The two-dimension character of the electron gas in n-type piezoresistors lead up to decreasing of the piezoresistive coefficients with increasing the degree of electron localisation. Moreover for p-type piezoresistors the predicted values of the piezoresistive coefficients are higher in case of localised holes. Additionally, to the integration of the piezoresistive sensor, actuator integrated into the cantilever is considered as fundamental for realisation of fast SPM imaging. Actuation of the beam is achieved thermally by relying on differences in the coefficients of thermal expansion between aluminum and silicon. In addition the aluminum layer forms the heating micro-resistor, which is able to accept heating impulses with frequency up to one megahertz. Such direct oscillating thermally driven bimorph actuator was studied also with respect to the bimorph actuator efficiency. Higher eigenmodes of the cantilever are used in order to increase the operating frequencies. As a result the scanning speed has been increased due to the decreasing of the actuation time constant. The fundamental limits to force sensitivity that are imposed by piezoresistive deflection sensing technique have been discussed. For imaging in ambient conditions the force sensitivity is limited by the thermo-mechanical cantilever noise. Additional noise sources, connected with the piezoresistive detection are negligible.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Intrinsisch leitfähige Polymere sind durch eine Reihe materialspezifischer Eigenschaften gekennzeichnet. In Abhängigkeit des angelegten Potenzials und der chemischen Umgebung zeigen sie elektrochromes Verhalten, Veränderungen der Masse, des Volumens und der elektronischen Leitfähigkeit. Basierend auf diesen Eigenschaften eignen sich halbleitende organische Polymere als funktionales Material für Anwendungen in der Mikro- und Nanotechnologie, insbesondere für miniaturisierte chemische Sensoren und Aktoren. Im Gegensatz zu konventionellen Piezo-Aktoren operieren diese Aktoren z. B. bei Spannungen unterhalb 1 V. Diese Arbeit befasst sich mit den elektrochemomechanischen Eigenschaften der ausgewählten Polymere Polyanilin und Polypyrrol, d. h. mit den potenzialkontrollierten Veränderungen des Volumens, der Struktur und der mechanischen Eigenschaften. Bei diesem Prozess werden positive Ladungen innerhalb der Polymerphase generiert. Um die für den Ladungsausgleich benötigten Gegenionen bereitzustellen, werden alle Messungen in Anwesenheit eines wässrigen Elektrolyten durchgeführt. Der Ladungstransport und die Volumenänderungen werden mit den Methoden der zyklischen Voltammetrie, der elektrochemischen Quarzmikrowaage und der Rastersondenmikroskopie untersucht. Signifikante Ergebnisse können für dünne homogene Polymerschichten erhalten werden, wobei Schichtdicken oberhalb 150 nm aufgrund der insbesondere bei Polyanilin einsetzenden Bildung von Fadenstrukturen (Fibrillen) vermieden werden. Von besonderem Interesse im Rahmen dieser Arbeit ist die Kombination der funktionalen Polymere mit Strukturen auf Siliziumbasis, insbesondere mit mikrostrukturierten Cantilevern. Die zuvor erhaltenen Ergebnisse bilden die Grundlage für das Design und die Dimensionierung der Mikroaktoren. Diese bestehen aus Siliziumcantilevern, die eine Elektrodenschicht aus Gold oder Platin tragen. Auf der Elektrode wird mittels Elektrodeposition eine homogene Schicht Polymer mit Schichtdicken bis zu 150 nm aufgebracht. Die Aktorcharakteristik, die Biegung des Cantilevers aufgrund des angelegten Potenzials, wird mit dem aus der Rastersondenmikroskopie bekannten Lichtzeigerverfahren gemessen. Das Aktorsystem wird hinsichtlich des angelegten Potenzials, des Elektrolyten und der Redox-Kinetik charakterisiert. Die verschiedenen Beiträge zum Aktorverhalten werden in situ während des Schichtwachstums untersucht. Das beobachtete Verhalten kann als Superposition verschiedener Effekte beschrieben werden. Darunter sind die Elektrodenaufladung (Elektrokapillarität), die Veränderungen der Elektrodenoberfläche durch dünne Oxidschichten und die Elektrochemomechanik des Polymers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The progress in microsystem technology or nano technology places extended requirements to the fabrication processes. The trend is moving towards structuring within the nanometer scale on the one hand, and towards fabrication of structures with high aspect ratio (ratio of vertical vs. lateral dimensions) and large depths in the 100 µm scale on the other hand. Current procedures for the microstructuring of silicon are wet chemical etching and dry or plasma etching. A modern plasma etching technique for the structuring of silicon is the so-called "gas chopping" etching technique (also called "time-multiplexed etching"). In this etching technique, passivation cycles, which prevent lateral underetching of sidewalls, and etching cycles, which etch preferably in the vertical direction because of the sidewall passivation, are constantly alternated during the complete etching process. To do this, a CHF3/CH4 plasma, which generates CF monomeres is employed during the passivation cycle, and a SF6/Ar, which generates fluorine radicals and ions plasma is employed during the etching cycle. Depending on the requirements on the etched profile, the durations of the individual passivation and etching cycles are in the range of a few seconds up to several minutes. The profiles achieved with this etching process crucially depend on the flow of reactants, i.e. CF monomeres during the passivation cycle, and ions and fluorine radicals during the etching cycle, to the bottom of the profile, especially for profiles with high aspect ratio. With regard to the predictability of the etching processes, knowledge of the fundamental effects taking place during a gas chopping etching process, and their impact onto the resulting profile is required. For this purpose in the context of this work, a model for the description of the profile evolution of such etching processes is proposed, which considers the reactions (etching or deposition) at the sample surface on a phenomenological basis. Furthermore, the reactant transport inside the etching trench is modelled, based on angular distribution functions and on absorption probabilities at the sidewalls and bottom of the trench. A comparison of the simulated profiles with corresponding experimental profiles reveals that the proposed model reproduces the experimental profiles, if the angular distribution functions and absorption probabilities employed in the model is in agreement with data found in the literature. Therefor the model developed in the context of this work is an adequate description of the effects taking place during a gas chopping plasma etching process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The TRIM.SP program which is based on the binary collision approximation was changed to handle not only repulsive interaction potentials, but also potentials with an attractive part. Sputtering yields, average depth and reflection coefficients calculated with four different potentials are compared. Three purely repulsive potentials (Meliere, Kr-C and ZBL) are used and an ab initio pair potential, which is especially calculated for silicon bombardment by silicon. The general trends in the calculated results are similar for all potentials applied, but differences between the repulsive potentials and the ab initio potential occur for the reflection coefficients and the sputtering yield at large angles of incidence.