2 resultados para Rutschungen, Massenbewegungen, Gefahrenanalyse, Risikoanalyse, Fuzzy-Logik
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
Mit aktiven Magnetlagern ist es möglich, rotierende Körper durch magnetische Felder berührungsfrei zu lagern. Systembedingt sind bei aktiv magnetgelagerten Maschinen wesentliche Signale ohne zusätzlichen Aufwand an Messtechnik für Diagnoseaufgaben verfügbar. In der Arbeit wird ein Konzept entwickelt, das durch Verwendung der systeminhärenten Signale eine Diagnose magnetgelagerter rotierender Maschinen ermöglicht und somit neben einer kontinuierlichen Anlagenüberwachung eine schnelle Bewertung des Anlagenzustandes gestattet. Fehler können rechtzeitig und ursächlich in Art und Größe erkannt und entsprechende Gegenmaßnahmen eingeleitet werden. Anhand der erfassten Signale geschieht die Gewinnung von Merkmalen mit signal- und modellgestützten Verfahren. Für den Magnetlagerregelkreis erfolgen Untersuchungen zum Einsatz modellgestützter Parameteridentifikationsverfahren, deren Verwendbarkeit wird bei der Diagnose am Regler und Leistungsverstärker nachgewiesen. Unter Nutzung von Simulationsmodellen sowie durch Experimente an Versuchsständen werden die Merkmalsverläufe im normalen Referenzzustand und bei auftretenden Fehlern aufgenommen und die Ergebnisse in einer Wissensbasis abgelegt. Diese dient als Grundlage zur Festlegung von Grenzwerten und Regeln für die Überwachung des Systems und zur Erstellung wissensbasierter Diagnosemodelle. Bei der Überwachung werden die Merkmalsausprägungen auf das Überschreiten von Grenzwerten überprüft, Informationen über erkannte Fehler und Betriebszustände gebildet sowie gegebenenfalls Alarmmeldungen ausgegeben. Sich langsam anbahnende Fehler können durch die Berechnung der Merkmalstrends mit Hilfe der Regressionsanalyse erkannt werden. Über die bisher bei aktiven Magnetlagern übliche Überwachung von Grenzwerten hinaus erfolgt bei der Fehlerdiagnose eine Verknüpfung der extrahierten Merkmale zur Identifizierung und Lokalisierung auftretender Fehler. Die Diagnose geschieht mittels regelbasierter Fuzzy-Logik, dies gestattet die Einbeziehung von linguistischen Aussagen in Form von Expertenwissen sowie die Berücksichtigung von Unbestimmtheiten und ermöglicht damit eine Diagnose komplexer Systeme. Für Aktor-, Sensor- und Reglerfehler im Magnetlagerregelkreis sowie Fehler durch externe Kräfte und Unwuchten werden Diagnosemodelle erstellt und verifiziert. Es erfolgt der Nachweis, dass das entwickelte Diagnosekonzept mit beherrschbarem Rechenaufwand korrekte Diagnoseaussagen liefert. Durch Kaskadierung von Fuzzy-Logik-Modulen wird die Transparenz des Regelwerks gewahrt und die Abarbeitung der Regeln optimiert. Endresultat ist ein neuartiges hybrides Diagnosekonzept, welches signal- und modellgestützte Verfahren der Merkmalsgewinnung mit wissensbasierten Methoden der Fehlerdiagnose kombiniert. Das entwickelte Diagnosekonzept ist für die Anpassung an unterschiedliche Anforderungen und Anwendungen bei rotierenden Maschinen konzipiert.
Resumo:
Im Zuge der Novellierung der Gasnetzzugangsverordnung sowie des Erneuerbare-Energien-Gesetzes entwickelte sich die Einspeisung von Biomethan in das Erdgasnetz als alternative Investitionsmöglichkeit der Erneuerbare-Energien-Branche. Als problematisch erweist sich dabei die Identifikation und Strukturierung einzelner Risikofaktoren zu einem Risikobereich, sowie die anschließende Quantifizierung dieser Risikofaktoren innerhalb eines Risikoportfolios. Darüber hinaus besteht die Schwierigkeit, diese Risikofaktoren in einem cashflowbasierten und den Ansprüchen der Investoren gewachsenem Risikomodell abzubilden. Zusätzlich müssen dabei Wechselwirkungen zwischen einzelnen Risikofaktoren berücksichtigt werden. Aus diesem Grund verfolgt die Dissertation das Ziel, die Risikosituation eines Biomethanprojektes anhand aggregierter und isolierter Risikosimulationen zu analysieren. Im Rahmen einer Diskussion werden Strategien und Instrumente zur Risikosteuerung angesprochen sowie die Implementierungsfähigkeit des Risikomodells in das Risikomanagementsystem von Investoren. Die Risikomaße zur Beschreibung der Risikoauswirkung betrachten die Shortfälle einer Verteilung. Dabei beziehen sich diese auf die geplanten Ausschüttungen sowie interne Verzinsungsansprüche der Investoren und die von Kreditinstituten geforderte minimale Schuldendienstdeckungsrate. Im Hinblick auf die Risikotragfähigkeit werden liquiditätsorientierte Kennzahlen hinzugezogen. Investoren interessieren sich vor dem Hintergrund einer gezielten Risikosteuerung hauptsächlich für den gefahrvollsten Risikobereich und innerhalb dessen für den Risikofaktor, der die größten Risikoauswirkungen hervorruft. Zudem spielt der Zeitpunkt maximaler Risikoauswirkung eine große Rolle. Als Kernaussage dieser Arbeit wird festgestellt, dass in den meisten Fällen die Aussagefähigkeit aggregierter Risikosimulationen durch Überlagerungseffekte negativ beeinträchtigt wird. Erst durch isoliert durchgeführte Risikoanalysen können diese Effekte eliminiert werden. Besonders auffällig gestalten sich dabei die Ergebnisse der isoliert durchgeführten Risikoanalyse des Risikobereichs »Politik«. So verursacht dieser im Vergleich zu den übrigen Risikobereichen, wie »Infrastruktur«, »Rohstoffe«, »Absatzmarkt« und »Finanzmarkt«, die geringsten Wahrscheinlichkeiten avisierte Planwerte der Investoren zu unterschreiten. Kommt es jedoch zu einer solchen Planwert-Unterschreitung, nehmen die damit verbundenen Risikoauswirkungen eine überraschende Position im Risikoranking der Investoren ein. Hinsichtlich der Aussagefähigkeit des Risikomodells wird deutlich, dass spezifische Risikosichtweisen der Investoren ausschlaggebend dafür sind, welche Strategien und Instrumente zur Risikosenkung umgesetzt werden. Darüber hinaus wird festgestellt, dass die Grenzen des Risikomodells in der Validität der Expertenmeinungen und dem Auffinden einer Optimallösung zu suchen sind.