3 resultados para Round and square balers

em Universitätsbibliothek Kassel, Universität Kassel, Germany


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In dieser Arbeit wurden elektronische Eigenschaften der sogenannten Spiroverbin-dungen untersucht, die aus zwei durch ein gemeinsames Spiro-Kohlenstoffatom miteinander verbundenen π-Systemen bestehen. Solche Untersuchungen sind notwendig, um die gezielte Synthese organischer Materialien mit bestimmten optischen, elektrischen, photoelektrischen oder magnetischen Eigenschaften zu ermöglichen. Im einzelnen wurden mit Hilfe der Cyclovoltammetrie, Square-Wave-Voltammetrie und Spektroelektrochemie eine Reihe homologer Spiro-p-oligophenyle, sowie symmetrisch und unsymmetrisch substituierte Spiroverbindungen und Spirocyclopentadithiophene unter-sucht. Dabei ergaben sich folgende Einflussfaktoren: Kettenlänge, verschiedene Substituenten (Trimethylsilyl, tert-Butyl, Fluor, Pyridyl, perfluoriertes Pyridyl, Dimethylamino-Gruppe), verschiedene Positionen der Substitution, Lage der Spiroverknüpfung und Art des π-Systems im Spirokern. Die elektronischen Eigenschaften der untersuchten Verbindungen variieren systema-tisch mit der Kettenlänge. So vermindert sich der Betrag der Redoxpotentiale der Spiroverbin-dungen mit Zunahme der Kettenlänge, während die Anzahl der übertragenen Elektronen mit zunehmender Kettenlänge wächst. Die Absorption der neutralen und geladenen Spezies ver-schiebt sich mit steigender Kettenlänge bathochrom. Der Substituenteneinfluss auf die Poten-tiallage hängt davon ab, welcher der Effekte +I, -I, +M, -M überwiegt; dabei spielt auch die Position der Substitution eine Rolle. Weiter lässt sich der Einfluss der Lage der Spiroverknüpfung auf die Redoxpotentiale mit der verschiedenen Coulomb-Abstoßung innerhalb oder/und zwischen Phenylketten bei symmetrisch und unsymmetrisch verknüpften Spiroverbindungen begründen. Schließlich wurden die Redoxmechanismen der untersuchten Spiroverbindungen er-mittelt. Die meisten Verbindungen werden zum Bis(radikalion) reduziert bzw. oxidiert (Me-chanismus A). Nur wenige Verbindungen werden nach Mechanismus B reduziert, in dem das Elektron unter Bildung eines Dianions in die schon einfach reduzierte Molekülhälfte über-geht. Die Unterschiede der Redoxpotentiale, der Lage der Absorption, des Reduktionsme-chanismus der Verbindungen mit unterschiedlichen Spirokernen (Spirobifluoren und Spiro-cyclopentadithiophen) konnten mit den unterschiedlichen elektronischen Strukturen von Phe-nyl- und Thiophenring (aromatisches und heteroaromatisches π System) erklärt werden.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In farbstoffsensibilisierten Solarzellen (DSSC) spielen Chromophore, die als Lichtsammel- und Energie-/Elektronentransfersysteme fungieren, eine zentrale Rolle. Phthalocyanine mit ihren intensiven Absorptionsbanden um 400 nm und 700 nm besitzen großes Potential für die effektive Sensibilisierung von Solarzellen. Trotz ihrer vielversprechenden physikochemischen Eigenschaften und intensiver Bemühungen erreichen Phthalocyanin-sensibilisierte Solarzellen nicht die Effizienzen, die bisher mit anderen Chromophorklassen erzielt werden konnten. In der vorliegenden Dissertation wurde die Entwicklung effizienter Lichtsammelsysteme für DSSC auf der Basis von Aza-substituierten Phthalocyaninen, sogenannten Pyrazinoporphyrazinen, verfolgt. Ein besonderer Fokus lag dabei auf einer Verbesserung der Absorptionseigenschaften der Chromophore im Bereich ihrer intrinsischen Absorptionslücke zwischen den Maxima um 400 nm und 700 nm. Um diese optische Lücke zu schließen wurden komplementär absorbierende BODIPY-Farbstoffe kovalent an synthetisch maßgeschneiderte Porphyrazine gebunden. Insgesamt wurden sechs neue Porphyrazin-Sensibilisatoren synthetisiert und photophysikalisch sowie elektrochemisch charakterisiert. Alle in dieser Arbeit untersuchten Porphyrazine tragen sterisch anspruchsvolle Tri(p-tolyl)propinyl-Gruppen um Agglomerationen zu vermeiden. Darüber hinaus wurden die Porphyrazine peripher entweder mit Hydroxy- oder Carboxygruppen als Bindungsstellen für oxidische Materialien ausgestattet sowie mit sechs BODIPY-Auxiliarfarbstoffen funktionalisiert, deren Substitutionsmuster variiert wurden. Zur Darstellung der komplexen Porphyrazine wurde eine Syntheseroute erarbeitet, die statistische Cyclisierungen unterschiedlicher Dinitril-Vorstufen beinhaltete und es ermöglichte, funktionelle Gruppen erst am vorgeformten Makrocyclus einzuführen. Die photophysikalische Untersuchung der hochfunktionalisierten Farbstoffe erfolgte über UV/Vis- und Fluoreszenzspektroskopie. Im Fall der BODIPY-Porphyrazin-Hybride schließt die zusätzliche Absorptionsbande der peripheren BODIPY-Einheiten die intrinsische Absorptionslücke der Porphyrazine. Die Hybride zeigen somit eine breite Absorption über den gesamten sichtbaren Spektralbereich mit hohen Extinktionskoeffizienten von ca. 4·10^5 M^−1cm^−1. Mittels Fluoreszenz- und Anregungsspektren wurde ein photoinduzierter Energie-transfer von den BODIPY-Einheiten auf den Porphyrazinkern nachgewiesen. Das elektrochemische Verhalten der BODIPY- und Porphyrazin-Verbindungen wurde mittels Cyclo- und Square-Wave-Voltammetrie untersucht. Die Effizienzen der Lichtenergieumwandlung wurden mit Hilfe von selbst-hergestellten und standardisierten farbstoffsensibilisierten Solarzellen bewertet. Alle Solarzellen zeigten eine messbare Photoaktivität unter Bestrahlung. Die Wirkungsgrade der Zellen lagen jedoch alle unter 1 %. Generell führten die Carboxyl-funktionalisierten Porphyrazine zu besseren Wirkungsgraden als die analogen, mit der tripodalen Ankergruppe ausgestatteten Derivate. Die mit Hilfe von Adsorptionsisothermen ermittelten Bindungskonstanten der Adsorption der Farbstoffe auf der TiO2-Oberfläche zeigten, dass beide Hafteinheiten eine feste Verankerung der Chromophore auf den TiO2-Elektroden ermöglichten. Insgesamt wirkte sich die Präsenz der peripheren BODIPY-Farbstoffe positiv auf die Wirkungsgrade der Solarzellen aus, jedoch nur in geringem Maß. Dieses Ergebnis wurde hauptsächlich auf die geringe Energiedifferenz zwischen der Leitungsbandkante des TiO2 und den LUMO-Energieniveaus der Chromophore zurückgeführt. Zusätzlich scheinen konkurrierende Prozesse wie die direkte Photoelektroneninjektion von den BODIPY-Einheiten in das TiO2 eine wichtige Rolle zu spielen. Neben der Anwendung in DSSC wurde die Wechselwirkung der Porphyrazine mit Graphen untersucht. Hierzu wurden A3B-Porphyrazine mit Pyrenyl-Seitenketten ausgestattet, die eine nicht-kovalente Verankerung des Chromophors auf Graphen ermöglichen. UV/Vis- und Fluoreszenzmessungen gaben u.a. erste Hinweise auf eine elektronische Kommunikation zwischen den beiden Hybridpartnern.