4 resultados para Robots, Industrial
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
This thesis investigates a method for human-robot interaction (HRI) in order to uphold productivity of industrial robots like minimization of the shortest operation time, while ensuring human safety like collision avoidance. For solving such problems an online motion planning approach for robotic manipulators with HRI has been proposed. The approach is based on model predictive control (MPC) with embedded mixed integer programming. The planning strategies of the robotic manipulators mainly considered in the thesis are directly performed in the workspace for easy obstacle representation. The non-convex optimization problem is approximated by a mixed-integer program (MIP). It is further effectively reformulated such that the number of binary variables and the number of feasible integer solutions are drastically decreased. Safety-relevant regions, which are potentially occupied by the human operators, can be generated online by a proposed method based on hidden Markov models. In contrast to previous approaches, which derive predictions based on probability density functions in the form of single points, such as most likely or expected human positions, the proposed method computes safety-relevant subsets of the workspace as a region which is possibly occupied by the human at future instances of time. The method is further enhanced by combining reachability analysis to increase the prediction accuracy. These safety-relevant regions can subsequently serve as safety constraints when the motion is planned by optimization. This way one arrives at motion plans that are safe, i.e. plans that avoid collision with a probability not less than a predefined threshold. The developed methods have been successfully applied to a developed demonstrator, where an industrial robot works in the same space as a human operator. The task of the industrial robot is to drive its end-effector according to a nominal sequence of grippingmotion-releasing operations while no collision with a human arm occurs.
Resumo:
In the past decades since Schumpeter’s influential writings economists have pursued research to examine the role of innovation in certain industries on firm as well as on industry level. Researchers describe innovations as the main trigger of industry dynamics, while policy makers argue that research and education are directly linked to economic growth and welfare. Thus, research and education are an important objective of public policy. Firms and public research are regarded as the main actors which are relevant for the creation of new knowledge. This knowledge is finally brought to the market through innovations. What is more, policy makers support innovations. Both actors, i.e. policy makers and researchers, agree that innovation plays a central role but researchers still neglect the role that public policy plays in the field of industrial dynamics. Therefore, the main objective of this work is to learn more about the interdependencies of innovation, policy and public research in industrial dynamics. The overarching research question of this dissertation asks whether it is possible to analyze patterns of industry evolution – from evolution to co-evolution – based on empirical studies of the role of innovation, policy and public research in industrial dynamics. This work starts with a hypothesis-based investigation of traditional approaches of industrial dynamics. Namely, the testing of a basic assumption of the core models of industrial dynamics and the analysis of the evolutionary patterns – though with an industry which is driven by public policy as example. Subsequently it moves to a more explorative approach, investigating co-evolutionary processes. The underlying questions of the research include the following: Do large firms have an advantage because of their size which is attributable to cost spreading? Do firms that plan to grow have more innovations? What role does public policy play for the evolutionary patterns of an industry? Are the same evolutionary patterns observable as those described in the ILC theories? And is it possible to observe regional co-evolutionary processes of science, innovation and industry evolution? Based on two different empirical contexts – namely the laser and the photovoltaic industry – this dissertation tries to answer these questions and combines an evolutionary approach with a co-evolutionary approach. The first chapter starts with an introduction of the topic and the fields this dissertation is based on. The second chapter provides a new test of the Cohen and Klepper (1996) model of cost spreading, which explains the relationship between innovation, firm size and R&D, at the example of the photovoltaic industry in Germany. First, it is analyzed whether the cost spreading mechanism serves as an explanation for size advantages in this industry. This is related to the assumption that the incentives to invest in R&D increase with the ex-ante output. Furthermore, it is investigated whether firms that plan to grow will have more innovative activities. The results indicate that cost spreading serves as an explanation for size advantages in this industry and, furthermore, growth plans lead to higher amount of innovative activities. What is more, the role public policy plays for industry evolution is not finally analyzed in the field of industrial dynamics. In the case of Germany, the introduction of demand inducing policy instruments stimulated market and industry growth. While this policy immediately accelerated market volume, the effect on industry evolution is more ambiguous. Thus, chapter three analyzes this relationship by considering a model of industry evolution, where demand-inducing policies will be discussed as a possible trigger of development. The findings suggest that these instruments can take the same effect as a technical advance to foster the growth of an industry and its shakeout. The fourth chapter explores the regional co-evolution of firm population size, private-sector patenting and public research in the empirical context of German laser research and manufacturing over more than 40 years from the emergence of the industry to the mid-2000s. The qualitative as well as quantitative evidence is suggestive of a co-evolutionary process of mutual interdependence rather than a unidirectional effect of public research on private-sector activities. Chapter five concludes with a summary, the contribution of this work as well as the implications and an outlook of further possible research.