6 resultados para Reproducing Kernel
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
Ricinodendron heudelotii (Baill.) Pierre ex Pax. kernel (njansang) commercialization has been promoted by the World Agroforestry Centre (ICRAF) in project villages in Cameroon with the aim to alleviate poverty for small-scale farmers. We evaluated to what extent development interventions improved the financial situation of households by comparing project and control households. The financial importance of njansang to household livelihoods between 2005 and 2010 was investigated through semi-structured questionnaires with retrospective questions, focus group discussions, interviews and wealth-ranking exercises. The importance of njansang increased strongly in the entire study region and the increase was significantly larger in project households. Moreover, absolute numbers of income from njansang commercialization as well as relative importance of njansang in total cash income, increased significantly more in project households (p < 0.05). Although the lower wealth class households could increase their income through njansang trade, the upper wealth class households benefited more from the projects' interventions. Group sales as conducted in project villages did not lead to significantly higher prices and should be reconsidered. Hence, promotion of njansang had a positive effect on total cash income and can still be improved. The corporative actors for njansang commercialization are encouraged to adapt their strategies to ensure that also the lower wealth class households benefit from the conducted project interventions. In this respect, frequent project monitoring and impact analysis are important tools to accomplish this adaptation.
Resumo:
The aim of this paper is to extend the method of approximate approximations to boundary value problems. This method was introduced by V. Maz'ya in 1991 and has been used until now for the approximation of smooth functions defined on the whole space and for the approximation of volume potentials. In the present paper we develop an approximation procedure for the solution of the interior Dirichlet problem for the Laplace equation in two dimensions using approximate approximations. The procedure is based on potential theoretical considerations in connection with a boundary integral equations method and consists of three approximation steps as follows. In a first step the unknown source density in the potential representation of the solution is replaced by approximate approximations. In a second step the decay behavior of the generating functions is used to gain a suitable approximation for the potential kernel, and in a third step Nyström's method leads to a linear algebraic system for the approximate source density. For every step a convergence analysis is established and corresponding error estimates are given.
Resumo:
Landwirtschaft spielt eine zentrale Rolle im Erdsystem. Sie trägt durch die Emission von CO2, CH4 und N2O zum Treibhauseffekt bei, kann Bodendegradation und Eutrophierung verursachen, regionale Wasserkreisläufe verändern und wird außerdem stark vom Klimawandel betroffen sein. Da all diese Prozesse durch die zugrunde liegenden Nährstoff- und Wasserflüsse eng miteinander verknüpft sind, sollten sie in einem konsistenten Modellansatz betrachtet werden. Dennoch haben Datenmangel und ungenügendes Prozessverständnis dies bis vor kurzem auf der globalen Skala verhindert. In dieser Arbeit wird die erste Version eines solchen konsistenten globalen Modellansatzes präsentiert, wobei der Schwerpunkt auf der Simulation landwirtschaftlicher Erträge und den resultierenden N2O-Emissionen liegt. Der Grund für diese Schwerpunktsetzung liegt darin, dass die korrekte Abbildung des Pflanzenwachstums eine essentielle Voraussetzung für die Simulation aller anderen Prozesse ist. Des weiteren sind aktuelle und potentielle landwirtschaftliche Erträge wichtige treibende Kräfte für Landnutzungsänderungen und werden stark vom Klimawandel betroffen sein. Den zweiten Schwerpunkt bildet die Abschätzung landwirtschaftlicher N2O-Emissionen, da bislang kein prozessbasiertes N2O-Modell auf der globalen Skala eingesetzt wurde. Als Grundlage für die globale Modellierung wurde das bestehende Agrarökosystemmodell Daycent gewählt. Neben der Schaffung der Simulationsumgebung wurden zunächst die benötigten globalen Datensätze für Bodenparameter, Klima und landwirtschaftliche Bewirtschaftung zusammengestellt. Da für Pflanzzeitpunkte bislang keine globale Datenbasis zur Verfügung steht, und diese sich mit dem Klimawandel ändern werden, wurde eine Routine zur Berechnung von Pflanzzeitpunkten entwickelt. Die Ergebnisse zeigen eine gute Übereinstimmung mit Anbaukalendern der FAO, die für einige Feldfrüchte und Länder verfügbar sind. Danach wurde das Daycent-Modell für die Ertragsberechnung von Weizen, Reis, Mais, Soja, Hirse, Hülsenfrüchten, Kartoffel, Cassava und Baumwolle parametrisiert und kalibriert. Die Simulationsergebnisse zeigen, dass Daycent die wichtigsten Klima-, Boden- und Bewirtschaftungseffekte auf die Ertragsbildung korrekt abbildet. Berechnete Länderdurchschnitte stimmen gut mit Daten der FAO überein (R2 = 0.66 für Weizen, Reis und Mais; R2 = 0.32 für Soja), und räumliche Ertragsmuster entsprechen weitgehend der beobachteten Verteilung von Feldfrüchten und subnationalen Statistiken. Vor der Modellierung landwirtschaftlicher N2O-Emissionen mit dem Daycent-Modell stand eine statistische Analyse von N2O-und NO-Emissionsmessungen aus natürlichen und landwirtschaftlichen Ökosystemen. Die als signifikant identifizierten Parameter für N2O (Düngemenge, Bodenkohlenstoffgehalt, Boden-pH, Textur, Feldfrucht, Düngersorte) und NO (Düngemenge, Bodenstickstoffgehalt, Klima) entsprechen weitgehend den Ergebnissen einer früheren Analyse. Für Emissionen aus Böden unter natürlicher Vegetation, für die es bislang keine solche statistische Untersuchung gab, haben Bodenkohlenstoffgehalt, Boden-pH, Lagerungsdichte, Drainierung und Vegetationstyp einen signifikanten Einfluss auf die N2O-Emissionen, während NO-Emissionen signifikant von Bodenkohlenstoffgehalt und Vegetationstyp abhängen. Basierend auf den daraus entwickelten statistischen Modellen betragen die globalen Emissionen aus Ackerböden 3.3 Tg N/y für N2O, und 1.4 Tg N/y für NO. Solche statistischen Modelle sind nützlich, um Abschätzungen und Unsicherheitsbereiche von N2O- und NO-Emissionen basierend auf einer Vielzahl von Messungen zu berechnen. Die Dynamik des Bodenstickstoffs, insbesondere beeinflusst durch Pflanzenwachstum, Klimawandel und Landnutzungsänderung, kann allerdings nur durch die Anwendung von prozessorientierten Modellen berücksichtigt werden. Zur Modellierung von N2O-Emissionen mit dem Daycent-Modell wurde zunächst dessen Spurengasmodul durch eine detailliertere Berechnung von Nitrifikation und Denitrifikation und die Berücksichtigung von Frost-Auftau-Emissionen weiterentwickelt. Diese überarbeitete Modellversion wurde dann an N2O-Emissionsmessungen unter verschiedenen Klimaten und Feldfrüchten getestet. Sowohl die Dynamik als auch die Gesamtsummen der N2O-Emissionen werden befriedigend abgebildet, wobei die Modelleffizienz für monatliche Mittelwerte zwischen 0.1 und 0.66 für die meisten Standorte liegt. Basierend auf der überarbeiteten Modellversion wurden die N2O-Emissionen für die zuvor parametrisierten Feldfrüchte berechnet. Emissionsraten und feldfruchtspezifische Unterschiede stimmen weitgehend mit Literaturangaben überein. Düngemittelinduzierte Emissionen, die momentan vom IPCC mit 1.25 +/- 1% der eingesetzten Düngemenge abgeschätzt werden, reichen von 0.77% (Reis) bis 2.76% (Mais). Die Summe der berechneten Emissionen aus landwirtschaftlichen Böden beträgt für die Mitte der 1990er Jahre 2.1 Tg N2O-N/y, was mit den Abschätzungen aus anderen Studien übereinstimmt.
Resumo:
Software Defined Radio (SDR) hardware platforms use parallel architectures. Current concepts of developing applications (such as WLAN) for these platforms are complex, because developers describe an application with hardware-specifics that are relevant to parallelism such as mapping and scheduling. To reduce this complexity, we have developed a new programming approach for SDR applications, called Virtual Radio Engine (VRE). VRE defines a language for describing applications, and a tool chain that consists of a compiler kernel and other tools (such as a code generator) to generate executables. The thesis presents this concept, as well as describes the language and the compiler kernel that have been developed by the author. The language is hardware-independent, i.e., developers describe tasks and dependencies between them. The compiler kernel performs automatic parallelization, i.e., it is capable of transforming a hardware-independent program into a hardware-specific program by solving hardware-specifics, in particular mapping, scheduling and synchronizations. Thus, VRE simplifies programming tasks as developers do not solve hardware-specifics manually.
Resumo:
The aim of this paper is the numerical treatment of a boundary value problem for the system of Stokes' equations. For this we extend the method of approximate approximations to boundary value problems. This method was introduced by V. Maz'ya in 1991 and has been used until now for the approximation of smooth functions defined on the whole space and for the approximation of volume potentials. In the present paper we develop an approximation procedure for the solution of the interior Dirichlet problem for the system of Stokes' equations in two dimensions. The procedure is based on potential theoretical considerations in connection with a boundary integral equations method and consists of three approximation steps as follows. In a first step the unknown source density in the potential representation of the solution is replaced by approximate approximations. In a second step the decay behavior of the generating functions is used to gain a suitable approximation for the potential kernel, and in a third step Nyström's method leads to a linear algebraic system for the approximate source density. For every step a convergence analysis is established and corresponding error estimates are given.
Resumo:
In den letzten Jahrzehnten haben sich makroskalige hydrologische Modelle als wichtige Werkzeuge etabliert um den Zustand der globalen erneuerbaren Süßwasserressourcen flächendeckend bewerten können. Sie werden heutzutage eingesetzt um eine große Bandbreite wissenschaftlicher Fragestellungen zu beantworten, insbesondere hinsichtlich der Auswirkungen anthropogener Einflüsse auf das natürliche Abflussregime oder der Auswirkungen des globalen Wandels und Klimawandels auf die Ressource Wasser. Diese Auswirkungen lassen sich durch verschiedenste wasserbezogene Kenngrößen abschätzen, wie z.B. erneuerbare (Grund-)Wasserressourcen, Hochwasserrisiko, Dürren, Wasserstress und Wasserknappheit. Die Weiterentwicklung makroskaliger hydrologischer Modelle wurde insbesondere durch stetig steigende Rechenkapazitäten begünstigt, aber auch durch die zunehmende Verfügbarkeit von Fernerkundungsdaten und abgeleiteten Datenprodukten, die genutzt werden können, um die Modelle anzutreiben und zu verbessern. Wie alle makro- bis globalskaligen Modellierungsansätze unterliegen makroskalige hydrologische Simulationen erheblichen Unsicherheiten, die (i) auf räumliche Eingabedatensätze, wie z.B. meteorologische Größen oder Landoberflächenparameter, und (ii) im Besonderen auf die (oftmals) vereinfachte Abbildung physikalischer Prozesse im Modell zurückzuführen sind. Angesichts dieser Unsicherheiten ist es unabdingbar, die tatsächliche Anwendbarkeit und Prognosefähigkeit der Modelle unter diversen klimatischen und physiographischen Bedingungen zu überprüfen. Bisher wurden die meisten Evaluierungsstudien jedoch lediglich in wenigen, großen Flusseinzugsgebieten durchgeführt oder fokussierten auf kontinentalen Wasserflüssen. Dies steht im Kontrast zu vielen Anwendungsstudien, deren Analysen und Aussagen auf simulierten Zustandsgrößen und Flüssen in deutlich feinerer räumlicher Auflösung (Gridzelle) basieren. Den Kern der Dissertation bildet eine umfangreiche Evaluierung der generellen Anwendbarkeit des globalen hydrologischen Modells WaterGAP3 für die Simulation von monatlichen Abflussregimen und Niedrig- und Hochwasserabflüssen auf Basis von mehr als 2400 Durchflussmessreihen für den Zeitraum 1958-2010. Die betrachteten Flusseinzugsgebiete repräsentieren ein breites Spektrum klimatischer und physiographischer Bedingungen, die Einzugsgebietsgröße reicht von 3000 bis zu mehreren Millionen Quadratkilometern. Die Modellevaluierung hat dabei zwei Zielsetzungen: Erstens soll die erzielte Modellgüte als Bezugswert dienen gegen den jegliche weiteren Modellverbesserungen verglichen werden können. Zweitens soll eine Methode zur diagnostischen Modellevaluierung entwickelt und getestet werden, die eindeutige Ansatzpunkte zur Modellverbesserung aufzeigen soll, falls die Modellgüte unzureichend ist. Hierzu werden komplementäre Modellgütemaße mit neun Gebietsparametern verknüpft, welche die klimatischen und physiographischen Bedingungen sowie den Grad anthropogener Beeinflussung in den einzelnen Einzugsgebieten quantifizieren. WaterGAP3 erzielt eine mittlere bis hohe Modellgüte für die Simulation von sowohl monatlichen Abflussregimen als auch Niedrig- und Hochwasserabflüssen, jedoch sind für alle betrachteten Modellgütemaße deutliche räumliche Muster erkennbar. Von den neun betrachteten Gebietseigenschaften weisen insbesondere der Ariditätsgrad und die mittlere Gebietsneigung einen starken Einfluss auf die Modellgüte auf. Das Modell tendiert zur Überschätzung des jährlichen Abflussvolumens mit steigender Aridität. Dieses Verhalten ist charakteristisch für makroskalige hydrologische Modelle und ist auf die unzureichende Abbildung von Prozessen der Abflussbildung und –konzentration in wasserlimitierten Gebieten zurückzuführen. In steilen Einzugsgebieten wird eine geringe Modellgüte hinsichtlich der Abbildung von monatlicher Abflussvariabilität und zeitlicher Dynamik festgestellt, die sich auch in der Güte der Niedrig- und Hochwassersimulation widerspiegelt. Diese Beobachtung weist auf notwendige Modellverbesserungen in Bezug auf (i) die Aufteilung des Gesamtabflusses in schnelle und verzögerte Abflusskomponente und (ii) die Berechnung der Fließgeschwindigkeit im Gerinne hin. Die im Rahmen der Dissertation entwickelte Methode zur diagnostischen Modellevaluierung durch Verknüpfung von komplementären Modellgütemaßen und Einzugsgebietseigenschaften wurde exemplarisch am Beispiel des WaterGAP3 Modells erprobt. Die Methode hat sich als effizientes Werkzeug erwiesen, um räumliche Muster in der Modellgüte zu erklären und Defizite in der Modellstruktur zu identifizieren. Die entwickelte Methode ist generell für jedes hydrologische Modell anwendbar. Sie ist jedoch insbesondere für makroskalige Modelle und multi-basin Studien relevant, da sie das Fehlen von feldspezifischen Kenntnissen und gezielten Messkampagnen, auf die üblicherweise in der Einzugsgebietsmodellierung zurückgegriffen wird, teilweise ausgleichen kann.