3 resultados para Regulated transcription

em Universitätsbibliothek Kassel, Universität Kassel, Germany


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cell-cell interactions during embryonic development are crucial in the co-ordination of growth, differentiation and maintenance of many different cell types. To achieve this co-ordination each cell must properly translate signals received from neighbouring cells, into spatially and temporally appropriate developmental responses. A surprisingly limited number of signal pathways are responsible for the differentiation of enormous variety of cell types. As a result, pathways are frequently 'reused' during development. Thus, in mammals the JAK/STAT pathway is required during early embryogenesis, mammary gland formation, hematopoiesis and, finally, plays a pivotal role in immune response. In the canonical way, the JAK/STAT pathway is represented by a transmembrane receptor associated with a Janus kinase (JAK), which upon stimulation by an extra-cellular ligand, phosphorylates itself, the receptor and, finally, the signal transducer and activator of transcription (STAT) molecules. Phosphorylated STATs dimerise and translocate to the nucleus where they activate transcription of target genes. The JAK/STAT pathway has been conserved throughout evolution, and all known components are present in the genome of Drosophila melanogaster. Besides hematopoietic and immunity functions, the pathway is also required during development for processes including embryonic segmentation, tracheal morphogenesis, posterior spiracle formation etc. This study describes Drosophila Ken&Barbie (Ken) as a selective regulator of JAK/STAT signalling. ken mutations identified in a screen for modulators of an eye overgrowth phenotype, caused by over-expression of the pathway ligand unpaired, also interact genetically with the pathway receptor domeless (dome) and the transcription factor stat92E. Over-expression of Ken can phenocopy developmental defects known to be caused by the loss of JAK/STAT signalling. These genetic interactions suggest that Ken may function as a negative regulator of the pathway. Ken has C-terminal Zn-finger domain, presumably for DNA binding, and N-terminal BTB/POZ domain, often found in transcriptional repressors. Using EGFP-fused construct expressed in vivo revealed nuclear accumulation of Ken. Therefore, it is proposed that Ken may act as a suppresser of STAT92E target genes. An in vitro assay, termed SELEX, determined that Ken specifically binds to a DNA sequence, with the essential for DNA recognition core overlapping that of STAT92E. This interesting observation suggests that not all STAT92E sites may also allow Ken binding. Strikingly, when effects of ectopic Ken on the expression of putative JAK/STAT pathway target genes were examined, only a subset of the genes tested, namely vvl, trh and kni, were down-regulated by Ken, whereas some others, such as eve and fj, appeared to be unresponsive. Further analysis of vvl, one of the genes susceptible to ectopic Ken, was undertaken. In the developing hindgut, expression of vvl is JAK/STAT pathway dependent, but remains repressed in the posterior spiracles, despite the stimulation of STAT92E by Upd in their primordia. Importantly, ken is also expressed in the developing posterior spiracles. Strikingly, up-regulation of vvl is observed in these tissues in ken mutant embryos. These imply that while ectopic Ken is sufficient to repress the expression of vvl in the hindgut, endogenous Ken is also necessary to prevent its activation in the posterior spiracles. It is therefore conceivable that ectopic vvl expression in the posterior spiracles of the ken mutants may be the result of de-repression of endogenous STAT92E activity. Another consequence of these observations is a fine balance that must exist between STAT92E and Ken activities. Apparently, endogenous level of Ken is sufficient to repress vvl, but not other, as yet unidentified, JAK/STAT pathway targets, whose presumable activation by STAT92E is required for posterior spiracle development as the embryos mutant for dome, the receptor of the pathway, show severe spiracle defects. These defects are also observed in the embryos mis-expressing Ken. Though it is possible that the posterior spiracle phenotype caused by higher levels of Ken results from a JAK/STAT pathway independent activity, it seems to be more likely that Ken acts in a dosage dependent manner, and extra Ken is able to further antagonise JAK/STAT pathway target genes. While STAT92E binding sites required for target gene expression have been poorly characterised, the existence of genome data allows the prediction of candidate STAT92E sites present in target genes promoters to be attempted. When a 6kb region containing the putative regulatory domains flanking the vvl locus are examined, only a single potential STAT92E binding site located 825bp upstream of the translational start can be detected. Strikingly, this site also includes a perfect Ken binding sequence. Such an in silico observation, though consistent with both Ken DNA binding assay in vitro and regulation of STAT92E target genes in vivo, however, requires further analysis. The JAK/STAT pathway is implicated in a variety of processes during embryonic and larval development as well as in imago. In each case, stimulation of the same transcription factor results in different developmental outcomes. While many potential mechanisms have been proposed and demonstrated to explain such pleiotropy, the present study indicates that Ken may represent another mechanism, with which signal transduction pathways are controlled. Ken selectively down-regulates a subset of potential target genes and so modifies the transcriptional profile generated by activated STAT92E - a mechanism, which may be partially responsible for differences in the morphogenetic processes elicited by JAK/STAT signalling during development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Control of protein synthesis is a key step in the regulation of gene expression during apoptosis and the heat shock response. Under such conditions, cap-dependent translation is impaired and Internal Ribosome Entry Site (IRES)-dependent translation plays a major role in mammalian cells. Although the role of IRES-dependent translation during apoptosis has been mainly studied in mammals, its role in the translation of Drosophila apoptotic genes has not been yet studied. The observation that the Drosophila mutant embryos for the cap-binding protein, the eukaryotic initiation factor eIF4E, exhibits increased apoptosis in correlation with up-regulated proapoptotic gene reaper (rpr) transcription constitutes the first evidence for the existence of a cap-independent mechanism for the translation of Drosophila proapoptotic genes. The mechanism of translation of rpr and other proapoptotic genes was investigated in this work. We found that the 5 UTR of rpr mRNA drives translation in an IRES-dependent manner. It promotes the translation of reporter RNAs in vitro either in the absence of cap, in the presence of cap competitors, or in extracts derived from heat shocked and eIF4E mutant embryos and in vivo in cells transfected with reporters bearing a non functional cap structure, indicating that cap recognition is not required in rpr mRNA for translation. We also show that rpr mRNA 5 UTR exhibits a high degree of similarity with that of Drosophila heat shock protein 70 mRNA (hsp70), an antagonist of apoptosis, and that both are able to conduct IRES-mediated translation. The proapoptotic genes head involution defective (hid) and grim, but not sickle, also display IRES activity. Studies of mRNA association to polysomes in embryos indicate that both rpr, hsp70, hid and grim endogenous mRNAs are recruited to polysomes in embryos in which apoptosis or thermal stress was induced. We conclude that hsp70 and, on the other hand, rpr, hid and grim which are antagonizing factors during apoptosis, use a similar mechanism for protein synthesis. The outcome for the cell would thus depend on which protein is translated under a given stress condition. Factors involved in the differential translation driven by these IRES could play an important role. For this purpose, we undertook the identification of the ribonucleoprotein (RNP) complexes assembled onto the 5 UTR of rpr mRNA. We established a tobramycin-affinity-selection protocol that allows the purification of specific RNP that can be further analyzed by mass spectrometry. Several RNA binding proteins were identified as part of the rpr 5 UTR RNP complex, some of which have been related to IRES activity. The involvement of one of them, the La antigen, in the translation of rpr mRNA, was established by RNA-crosslinking experiments using recombinant protein and rpr 5 UTR and by the analysis of the translation efficiency of reporter mRNAs in Drosophila cells after knock down of the endogenous La by RNAi experiments. Several uncharacterized proteins were also identified, suggesting that they might play a role during translation, during the assembly of the translational machinery or in the priming of the mRNA before ribosome recognition. Our data provide evidence for the involvement of La antigen in the translation of rpr mRNA and set a protocol for purification of tagged-RNA-protein complexes from cytoplasmic extracts. To further understand the mechanisms of translation initiation in Drosophila, we analyzed the role of eIF4B on cap-dependent and cap-independent translation. We showed that eIF4B is mostly involved in cap-, but not IRES-dependent translation as it happens in mammals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DNA methyltransferases of type Dnmt2 are a highly conserved protein family with enigmatic function. The aim of this work was to characterize DnmA, the Dnmt2 methyltransferase in Dictyostelium discoideum, and further to investigate its implication in DNA methylation and transcriptional gene silencing. The genome of the social amoeba Dictyostelium encodes DnmA as the sole DNA methyltransferase. The enzyme bears all ten characteristic DNA methyltransferase motifs in its catalytic domain. The DnmA mRNA was found by RT-PCR to be expressed during vegetative growth and down regulated during development. Investigations using fluorescence microscopy showed that both DnmA-myc and DnmA-GFP fusions predominantly localised to the nucleus. The function of DnmA remained initially unclear, but later experiment revealed that the enzyme is an active DNA methyltransferase responsible for all DNA (cytosine) methylation in Dictyostelium. Neither in gel retardation assays, nor by the yeast two hybrid system, clues on the functionality of DnmA could be obtained. However, immunological detection of the methylation mark with an α - 5mC antibody gave initial evidence that the DNA of Dictyostelium was methylated. Furthermore, addition of 5-aza-cytidine as demethylating agent to the Dictyostelium medium and subsequent in vitro incubation of the DNA isolated from these cells with recombinant DnmA showed that the enzyme binds slightly better to this target DNA. In order to investigate further the function of the protein, a gene knock-out for dnmA was generated. The gene was successfully disrupted by homologous recombination, the knock-out strain, however, did not show any obvious phenotype under normal laboratory conditions. To identify specific target sequences for DNA methylation, a microarray analysis was carried out. Setting a threshold of at least 1.5 fold for differences in the strength of gene expression, several such genes in the knock-out strain were chosen for further investigation. Among the up-regulated genes were the ESTs representing the gag and the RT genes respectively of the retrotransposon skipper. In addition Northern blot analysis confirmed the up-regulation of skipper in the DnmA knock-out strain. Bisufite treatment and sequencing of specific DNA stretches from skipper revealed that DnmA is responsible for methylation of mostly asymmetric cytosines. Together with skipper, DIRS-1 retrotransposon was found later also to be methylated but was not present on the microarray. Furthermore, skipper transcription was also up-regulated in strains that had genes disrupted encoding components of the RNA interference pathway. In contrast, DIRS 1 expression was not affected by a loss of DnmA but was strongly increased in the strain that had the RNA directed RNA polymerase gene rrpC disrupted. Strains generated by propagating the usual wild type Ax2 and the DnmA knock-out cells over 16 rounds in development were analyzed for transposon activity. Northern blot analysis revealed activation for skipper expression, but not for DIRS-1. A large number of siRNAs were found to be correspondent to the DIRS-1 sequence, suggesting concerted regulation of DIRS-1 expression by RNAi and DNA methylation. In contrast, no siRNAs corresponding to the standard skipper element were found. The data show that DNA methylation plays a crucial role in epigenetic gene regulation in Dictyostelium and that different, partially overlapping mechanisms control transposon silencing for skipper and DIRS-1. To elucidate the mechanism of targeting the protein to particular genes in the Dictyostelium genome, some more genes which were up-regulated in the DnmA knock-out strain were analyzed by bisulfite sequencing. The chosen genes are involved in the multidrug response in other species, but their function in Dictyostelium is uncertain. Bisulfite data showed that two of these genes were methylated at asymmetrical C-residues in the wild type, but not in DnmA knock-out cells. This suggested that DNA methylation in Dictyostelium is involved not only in transposon regulation but also in transcriptional silencing of specific genes.