4 resultados para Region of interest
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
The consumers are becoming more concerned about food quality, especially regarding how, when and where the foods are produced (Haglund et al., 1999; Kahl et al., 2004; Alföldi, et al., 2006). Therefore, during recent years there has been a growing interest in the methods for food quality assessment, especially in the picture-development methods as a complement to traditional chemical analysis of single compounds (Kahl et al., 2006). The biocrystallization as one of the picture-developing method is based on the crystallographic phenomenon that when crystallizing aqueous solutions of dihydrate CuCl2 with adding of organic solutions, originating, e.g., from crop samples, biocrystallograms are generated with reproducible crystal patterns (Kleber & Steinike-Hartung, 1959). Its output is a crystal pattern on glass plates from which different variables (numbers) can be calculated by using image analysis. However, there is a lack of a standardized evaluation method to quantify the morphological features of the biocrystallogram image. Therefore, the main sakes of this research are (1) to optimize an existing statistical model in order to describe all the effects that contribute to the experiment, (2) to investigate the effect of image parameters on the texture analysis of the biocrystallogram images, i.e., region of interest (ROI), color transformation and histogram matching on samples from the project 020E170/F financed by the Federal Ministry of Food, Agriculture and Consumer Protection(BMELV).The samples are wheat and carrots from controlled field and farm trials, (3) to consider the strongest effect of texture parameter with the visual evaluation criteria that have been developed by a group of researcher (University of Kassel, Germany; Louis Bolk Institute (LBI), Netherlands and Biodynamic Research Association Denmark (BRAD), Denmark) in order to clarify how the relation of the texture parameter and visual characteristics on an image is. The refined statistical model was accomplished by using a lme model with repeated measurements via crossed effects, programmed in R (version 2.1.0). The validity of the F and P values is checked against the SAS program. While getting from the ANOVA the same F values, the P values are bigger in R because of the more conservative approach. The refined model is calculating more significant P values. The optimization of the image analysis is dealing with the following parameters: ROI(Region of Interest which is the area around the geometrical center), color transformation (calculation of the 1 dimensional gray level value out of the three dimensional color information of the scanned picture, which is necessary for the texture analysis), histogram matching (normalization of the histogram of the picture to enhance the contrast and to minimize the errors from lighting conditions). The samples were wheat from DOC trial with 4 field replicates for the years 2003 and 2005, “market samples”(organic and conventional neighbors with the same variety) for 2004 and 2005, carrot where the samples were obtained from the University of Kassel (2 varieties, 2 nitrogen treatments) for the years 2004, 2005, 2006 and “market samples” of carrot for the years 2004 and 2005. The criterion for the optimization was repeatability of the differentiation of the samples over the different harvest(years). For different samples different ROIs were found, which reflect the different pictures. The best color transformation that shows efficiently differentiation is relied on gray scale, i.e., equal color transformation. The second dimension of the color transformation only appeared in some years for the effect of color wavelength(hue) for carrot treated with different nitrate fertilizer levels. The best histogram matching is the Gaussian distribution. The approach was to find a connection between the variables from textural image analysis with the different visual criteria. The relation between the texture parameters and visual evaluation criteria was limited to the carrot samples, especially, as it could be well differentiated by the texture analysis. It was possible to connect groups of variables of the texture analysis with groups of criteria from the visual evaluation. These selected variables were able to differentiate the samples but not able to classify the samples according to the treatment. Contrarily, in case of visual criteria which describe the picture as a whole there is a classification in 80% of the sample cases possible. Herewith, it clearly can find the limits of the single variable approach of the image analysis (texture analysis).
Resumo:
Water shortage is one of the major constraints for production of horticultural crops in arid and semiarid regions. A field experiment was conducted to determine irrigation water and fertilizer use efficiency, growth and yield of tomato under clay pot irrigation at the experimental site of Sekota Dryland Agricultural Research Center, Lalibela, Ethiopia in 2009/10. The experiment comprised of five treatments including furrow irrigated control and clay pot irrigation with different plant population and fertilization methods, which were arranged in Randomized Complete Block Design with three replications. The highest total and marketable fruit yields were obtained from clay pot irrigation combined with application of nitrogen fertilizer with irrigation water irrespective of difference in plant population. The clay pot irrigation had seasonal water use of up to 143.71 mm, which resulted in significantly higher water use efficiency (33.62 kg m^-3) as compared to the furrow irrigation, which had a seasonal water use of 485.50 mm, and a water use efficiency of 6.67 kg m^-3. Application of nitrogen fertilizer with irrigation water in clay pots improved fertilizer use efficiency of tomato by up to 52% than band application with furrow or clay pot irrigation. Thus, clay pot irrigation with 33,333 plants ha^-1 and nitrogen fertilizer application with irrigation water in clay pots was the best method for increasing the yield of tomato while economizing the use of water and nitrogen fertilizer in a semiarid environment.
Resumo:
Short summary: This study was undertaken to assess the diversity of plant resources utilized by the local population in south-western Madagascar, the social, ecological and biophysical conditions that drive their uses and availability, and possible alternative strategies for their sustainable use in the region. The study region, ‘Mahafaly region’, located in south-western Madagascar, is one of the country’s most economically, educationally and climatically disadvantaged regions. With an arid steppe climate, the agricultural production is limited by low water availability and a low level of soil nutrients and soil organic carbon. The region comprises the recently extended Tsimanampetsotsa National Park, with numerous sacred and communities forests, which are threatened by slash and burn agriculture and overexploitation of forests resources. The present study analyzed the availability of wild yams and medicinal plants, and their importance for the livelihood of the local population in this region. An ethnobotanical survey was conducted recording the diversity, local knowledge and use of wild yams and medicinal plants utilized by the local communities in five villages in the Mahafaly region. 250 households were randomly selected followed by semi-structured interviews on the socio-economic characteristics of the households. Data allowed us to characterize sociocultural and socioeconomic factors that determine the local use of wild yams and medicinal plants, and to identify their role in the livelihoods of local people. Species-environment relationships and the current spatial distribution of the wild yams were investigated and predicted using ordination methods and a niche based habitat modelling approach. Species response curves along edaphic gradients allowed us to understand the species requirements on habitat conditions. We thus investigated various alternative methods to enhance the wild yam regeneration for their local conservation and their sustainable use in the Mahafaly region. Altogether, six species of wild yams and a total of 214 medicinal plants species from 68 families and 163 genera were identified in the study region. Results of the cluster and discriminant analysis indicated a clear pattern on resource, resulted in two groups of household and characterized by differences in livestock numbers, off-farm activities, agricultural land and harvests. A generalized linear model highlighted that economic factors significantly affect the collection intensity of wild yams, while the use of medicinal plants depends to a higher degree on socio-cultural factors. The gradient analysis on the distribution of the wild yam species revealed a clear pattern for species habitats. Species models based on NPMR (Nonparametric Multiplicative Regression analysis) indicated the importance of vegetation structure, human interventions, and soil characteristics to determine wild yam species distribution. The prediction of the current availability of wild yam resources showed that abundant wild yam resources are scarce and face high harvest intensity. Experiments on yams cultivation revealed that germination of seeds was enhanced by using pre-germination treatments before planting, vegetative regeneration performed better with the upper part of the tubers (corms) rather than the sets of tubers. In-situ regeneration was possible for the upper parts of the wild tubers but the success depended significantly on the type of soil. The use of manure (10-20 t ha¹) increased the yield of the D. alata and D. alatipes by 40%. We thus suggest the promotion of other cultivated varieties of D. alata found regions neighbouring as the Mahafaly Plateau.
Resumo:
This paper uses the data of 1338 rural households in the Northern Mountainous Region of Vietnam to examine the extent to which subsidised credit targets the poor and its impacts. Principal Component Analysis and Propensity Score Matching were used to evaluate the depth of outreach and the income impact of credit. To address the problem of model uncertainty, the approach of Bayesian Model Average applied to the probit model was used. Results showed that subsidised credit successfully targeted the poor households with 24.10% and 69.20% of clients falling into the poorest group and the three bottom groups respectively. Moreover, those who received subsidised credit make up 83% of ethnic minority households. These results indicate that governmental subsidies are necessary to reach the poor and low income households, who need capital but are normally bypassed by commercial banks. Analyses also showed that ethnicity and age of household heads, number of helpers, savings, as well as how affected households are by shocks were all factors that further explained the probability at which subsidised credit has been assessed. Furthermore, recipients obtained a 2.61% higher total income and a 5.93% higher farm income compared to non-recipients. However, these small magnitudes of effects are statistically insignificant at a 5% level. Although the subsidised credit is insufficient to significantly improve the income of the poor households, it possibly prevents these households of becoming even poorer.