4 resultados para Rate calibration

em Universitätsbibliothek Kassel, Universität Kassel, Germany


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In now-a-days semiconductor and MEMS technologies the photolithography is the working horse for fabrication of functional devices. The conventional way (so called Top-Down approach) of microstructuring starts with photolithography, followed by patterning the structures using etching, especially dry etching. The requirements for smaller and hence faster devices lead to decrease of the feature size to the range of several nanometers. However, the production of devices in this scale range needs photolithography equipment, which must overcome the diffraction limit. Therefore, new photolithography techniques have been recently developed, but they are rather expensive and restricted to plane surfaces. Recently a new route has been presented - so-called Bottom-Up approach - where from a single atom or a molecule it is possible to obtain functional devices. This creates new field - Nanotechnology - where one speaks about structures with dimensions 1 - 100 nm, and which has the possibility to replace the conventional photolithography concerning its integral part - the self-assembly. However, this technique requires additional and special equipment and therefore is not yet widely applicable. This work presents a general scheme for the fabrication of silicon and silicon dioxide structures with lateral dimensions of less than 100 nm that avoids high-resolution photolithography processes. For the self-aligned formation of extremely small openings in silicon dioxide layers at in depth sharpened surface structures, the angle dependent etching rate distribution of silicon dioxide against plasma etching with a fluorocarbon gas (CHF3) was exploited. Subsequent anisotropic plasma etching of the silicon substrate material through the perforated silicon dioxide masking layer results in high aspect ratio trenches of approximately the same lateral dimensions. The latter can be reduced and precisely adjusted between 0 and 200 nm by thermal oxidation of the silicon structures owing to the volume expansion of silicon during the oxidation. On the basis of this a technology for the fabrication of SNOM calibration standards is presented. Additionally so-formed trenches were used as a template for CVD deposition of diamond resulting in high aspect ratio diamond knife. A lithography-free method for production of periodic and nonperiodic surface structures using the angular dependence of the etching rate is also presented. It combines the self-assembly of masking particles with the conventional plasma etching techniques known from microelectromechanical system technology. The method is generally applicable to bulk as well as layered materials. In this work, layers of glass spheres of different diameters were assembled on the sample surface forming a mask against plasma etching. Silicon surface structures with periodicity of 500 nm and feature dimensions of 20 nm were produced in this way. Thermal oxidation of the so structured silicon substrate offers the capability to vary the fill factor of the periodic structure owing to the volume expansion during oxidation but also to define silicon dioxide surface structures by selective plasma etching. Similar structures can be simply obtained by structuring silicon dioxide layers on silicon. The method offers a simple route for bridging the Nano- and Microtechnology and moreover, an uncomplicated way for photonic crystal fabrication.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Es ist bekannt, dass die Dichte eines gelösten Stoffes die Richtung und die Stärke seiner Bewegung im Untergrund entscheidend bestimmen kann. Eine Vielzahl von Untersuchungen hat gezeigt, dass die Verteilung der Durchlässigkeiten eines porösen Mediums diese Dichteffekte verstärken oder abmindern kann. Wie sich dieser gekoppelte Effekt auf die Vermischung zweier Fluide auswirkt, wurde in dieser Arbeit untersucht und dabei das experimentelle sowohl mit dem numerischen als auch mit dem analytischen Modell gekoppelt. Die auf der Störungstheorie basierende stochastische Theorie der macrodispersion wurde in dieser Arbeit für den Fall der transversalen Makodispersion. Für den Fall einer stabilen Schichtung wurde in einem Modelltank (10m x 1.2m x 0.1m) der Universität Kassel eine Serie sorgfältig kontrollierter zweidimensionaler Experimente an einem stochastisch heterogenen Modellaquifer durchgeführt. Es wurden Versuchsreihen mit variierenden Konzentrationsdifferenzen (250 ppm bis 100 000 ppm) und Strömungsgeschwindigkeiten (u = 1 m/ d bis 8 m/d) an drei verschieden anisotrop gepackten porösen Medien mit variierender Varianzen und Korrelationen der lognormal verteilten Permeabilitäten durchgeführt. Die stationäre räumliche Konzentrationsausbreitung der sich ausbreitenden Salzwasserfahne wurde anhand der Leitfähigkeit gemessen und aus der Höhendifferenz des 84- und 16-prozentigen relativen Konzentrationsdurchgang die Dispersion berechnet. Parallel dazu wurde ein numerisches Modell mit dem dichteabhängigen Finite-Elemente-Strömungs- und Transport-Programm SUTRA aufgestellt. Mit dem kalibrierten numerischen Modell wurden Prognosen für mögliche Transportszenarien, Sensitivitätsanalysen und stochastische Simulationen nach der Monte-Carlo-Methode durchgeführt. Die Einstellung der Strömungsgeschwindigkeit erfolgte - sowohl im experimentellen als auch im numerischen Modell - über konstante Druckränder an den Ein- und Auslauftanks. Dabei zeigte sich eine starke Sensitivität der räumlichen Konzentrationsausbreitung hinsichtlich lokaler Druckvariationen. Die Untersuchungen ergaben, dass sich die Konzentrationsfahne mit steigendem Abstand von der Einströmkante wellenförmig einem effektiven Wert annähert, aus dem die Makrodispersivität ermittelt werden kann. Dabei zeigten sich sichtbare nichtergodische Effekte, d.h. starke Abweichungen in den zweiten räumlichen Momenten der Konzentrationsverteilung der deterministischen Experimente von den Erwartungswerten aus der stochastischen Theorie. Die transversale Makrodispersivität stieg proportional zur Varianz und Korrelation der lognormalen Permeabilitätsverteilung und umgekehrt proportional zur Strömungsgeschwindigkeit und Dichtedifferenz zweier Fluide. Aus dem von Welty et al. [2003] mittels Störungstheorie entwickelten dichteabhängigen Makrodispersionstensor konnte in dieser Arbeit die stochastische Formel für die transversale Makrodispersion weiter entwickelt und - sowohl experimentell als auch numerisch - verifiziert werden.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For millennia oasis agriculture has been the backbone of rural livelihood in the desertic Sultanate of Oman. However, little is known about the functioning of these oasis systems, in particular with respect to the C turnover. The objective was to determine the effects of crop, i.e. alfalfa, wheat and bare fallow on the CO2 evolution rate during an irrigation cycle in relation to changes in soil water content and soil temperature. The gravimetric soil water content decreased from initially 24% to approximately 16% within 7 days after irrigation. The mean CO2 evolution rates increased significantly in the order fallow (27.4 mg C m^−2 h^−1) < wheat (45.5 mg C m^−2 h^−1) < alfalfa (97.5 mg C m^−2 h^−1). It can be calculated from these data that the CO2 evolution rate of the alfalfa root system was nearly four times higher than the corresponding rate in the wheat root system. The decline in CO2 evolution rate, especially during the first 4 days after irrigation, was significantly related to the decline in the gravimetric water content, with r = 0.70. CO2 evolution rate and soil temperature at 5 cm depth were negatively correlated (r = -0.56,n = 261) due to increasing soil temperature with decreasing gravimetric water content.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Type and rate of fertilizers influence the level of soil organic carbon (Corg) and total nitrogen (Nt) markedly, but the effect on C and N partitioning into different pools is open to question. The objectives of the present work were to: (i) quantify the impact of fertilizer type and rate on labile, intermediate and passive C and N pools by using a combination of biological, chemical and mathematical methods; (ii) explain previously reported differences in the soil organic matter (SOM) levels between soils receiving farmyard manure with or without biodynamic preparations by using Corg time series and information on SOM partitioning; and (iii) quantify the long-term and short-term dynamics of SOM in density fractions and microbial biomass as affected by fertilizer type and rate and determine the incorporation of crop residues into labile SOM fractions. Samples were taken from a sandy Cambisol from the long-term fertilization trial in Darmstadt, Germany, founded in 1980. The nine treatments (four field replicates) were: straw incorporation plus application of mineral fertilizer (MSI) and application of rotted farmyard manure with (DYN) or without (FYM) addition of biodynamic preparations, each at high (140 – 150 kg N ha-1 year-1; MSIH, DYNH, FYMH), medium (100 kg N ha-1 year-1; MSIM, DYNM, FYMM) and low (50 – 60 kg N ha-1 year-1; MSIL, DYNL, FYML) rates. The main findings were: (i) The stocks of Corg (t ha-1) were affected by fertilizer type and rate and increased in the order MSIL (23.6), MSIM (23.7), MSIH (24.2) < FYML (25.3) < FYMM (28.1), FYMH (28.1). Stocks of Nt were affected in the same way (C/N ratio: 11). Storage of C and N in the modelled labile pools (turnover times: 462 and 153 days for C and N, respectively) were not influenced by the type of fertilizer (FYM and MSI) but depended significantly (p ≤ 0.05) on the application rate and ranged from 1.8 to 3.2 t C ha 1 (7 – 13% of Corg) and from 90 to 140 kg N ha-1 (4-5% of Nt). In the calculated intermediate pool (C/N ratio 7), stocks of C were markedly higher in FYM treatments (15-18 t ha-1) compared to MSI treatments (12-14 t ha-1). This showed that differences in SOM stocks in the sandy Cambisol induced by fertilizer rate may be short-lived in case of changing management, but differences induced by fertilizer type may persist for decades. (ii) Crop yields, estimated C inputs (1.5 t ha-1 year-1) with crop residue, microbial bio¬mass C (Cmic, 118 – 150 mg kg-1), microbial biomass N (17 – 20 mg kg-1) and labile C and N pools did not differ significantly between FYM and DYN treatments. However, labile C increased linearly with application rate (R2 = 0.53) from 7 to 11% of Corg. This also applied for labile N (3.5 to 4.9% of Nt). The higher contents of Corg in DYN treatments existed since 1982, when the first sampling was conducted for all individual treatments. Contents of Corg between DYN and FYM treatments con-verged slightly since then. Furthermore, at least 30% of the difference in Corg was located in the passive pool where a treatment effect could be excluded. Therefore, the reported differences in Corg contents existed most likely since the beginning of the experiment and, as a single factor of biodynamic agriculture, application of bio-dynamic preparations had no effect on SOM stocks. (iii) Stocks of SOM, light fraction organic C (LFOC, ρ ≤ 2.0 g cm-3), light fraction organic N and Cmic decreased in the order FYMH > FYML > MSIH, MSIL for all sampling dates in 2008 (March, May, September, December). However, statistical significance of treatment effects differed between the dates, probably due to dif-ferences in the spatial variation throughout the year. The high proportion of LFOC on total Corg stocks (45 – 55%) highlighted the importance of selective preservation of OM as a stabilization mechanism in this sandy Cambisol. The apparent turnover time of LFOC was between 21 and 32 years, which agreed very well with studies with substantially longer vegetation change compared to our study. Overall, both approaches; (I) the combination of incubation, chemical fractionation and simple modelling and (II) the density fractionation; provided complementary information on the partitioning of SOM into pools of different stability. The density fractionation showed that differences in Corg stocks between FYM and MSI treatments were mainly located in the light fraction, i.e. induced by higher recalcitrance of the organic input in the FYM treatments. Moreover, the use of the combination of biological, chemical and mathematical methods indicated that effects of fertilizer rate on total Corg and Nt stocks may be short-lived, but that the effect of fertilizer type may persist for longer time spans in the sandy Cambisol.