3 resultados para Random Number of Ancestors

em Universitätsbibliothek Kassel, Universität Kassel, Germany


Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is well known that Stickelberger-Swan theorem is very important for determining reducibility of polynomials over a binary field. Using this theorem it was determined the parity of the number of irreducible factors for some kinds of polynomials over a binary field, for instance, trinomials, tetranomials, self-reciprocal polynomials and so on. We discuss this problem for type II pentanomials namely x^m +x^{n+2} +x^{n+1} +x^n +1 \in\ IF_2 [x]. Such pentanomials can be used for efficient implementing multiplication in finite fields of characteristic two. Based on the computation of discriminant of these pentanomials with integer coefficients, it will be characterized the parity of the number of irreducible factors over IF_2 and be established the necessary conditions for the existence of this kind of irreducible pentanomials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Various results on parity of the number of irreducible factors of given polynomials over finite fields have been obtained in the recent literature. Those are mainly based on Swan’s theorem in which discriminants of polynomials over a finite field or the integral ring Z play an important role. In this paper we consider discriminants of the composition of some polynomials over finite fields. The relation between the discriminants of composed polynomial and the original ones will be established. We apply this to obtain some results concerning the parity of the number of irreducible factors for several special polynomials over finite fields.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of the occupation of the single particle levels on the impact parameter dependent K - K charge transfer occuring in collisions of 90 keV Ne{^9+} on Ne was studied using coupled channel calculations. The energy eigenvalues and matrixelements for the single particle levels were taken from ab initio self consistent MO-LCAO-DIRAC-FOCK-SLATER calculations with occupation numbers corresponding to the single particle amplitudes given by the coupled channel calculations.