11 resultados para RNA sequencing

em Universitätsbibliothek Kassel, Universität Kassel, Germany


Relevância:

60.00% 60.00%

Publicador:

Resumo:

RNA mediated gene silencing pathways are highly conserved among eukaryotes and they have been well investigated in animals and in plants. Longer dsRNA molecules trigger the silencing pathways: RNase III proteins and their dsRNA binding protein (dsRBP) partners recognize those molecules as a substrate and process 21 nucleotide long microRNAs (miRNAs) or small interfering RNAs (siRNAs). Some organisms encode RNA dependent RNA polymerases (RdRPs), which are able to expand the pool of existing siRNAs. Argonaute proteins are able to bind small regulatory RNAs and are subsequently recruited to target mRNAs by base complementary. This leads in turn to transcriptional or posttranscriptional silencing of respective genes. The Dictyostelium discoideum genome encodes two Dicer homologues (DrnA and DrnB), five Argonaute proteins (AgnA to AgnE) and three RdRPs (RrpA to RrpC). In addition, the amoeba is known to express miRNAs and siRNAs, while the latter derive mainly from the DIRS-1 retrotransposon. One part of this work focused on the miRNA biogenesis pathway of D. discoideum. It was shown that the dsRNA binding protein RbdB is a necessary component for miRNA processing in the amoeba. There were no mature miRNAs detectable by Northern blot analysis in rbdB- strains, which is also true for drnB mutants. Moreover, primary miRNA-transcripts (pri-miRNAs) accumulated in rbdB- and drnB- strains. Fluorescence microscopy studies showed a nuclear localization of RbdB. RbdB accumulated in distinct perinucleolar foci. These were reminiscent of plant dicing bodies that contain essential protein components for miRNA processing. It is well known that RNase III enzymes and dsRBPs work together during miRNA processing in higher eukaryotes. This work demonstrated that the same is true for members of the amoebozoa supergroup. In Arabidopsis the nuclear zinc finger protein Serrate (SE) is also necessary for miRNA processing. The D. discoideum homologue SrtA, however, is not relevant which has been shown by the analysis of the respective knockdown strain. MiRNAs are known to be differentially expressed in several RNAi knockout strains. The accumulation of miRNAs in agnA- strains and a strong decrease in rbdB- strains were criteria that could thus be successfully used (among others) to identify and validate new miRNAs candidates by Illumina®-RNA sequencing. In another part of this study, the silencing and amplification of the DIRS-1 retrotransposons was analyzed in more detail. It was already known that DIRS-1 transcripts and extrachromosomal DIRS-1 DNA molecules accumulated in agnA- strains. This phenotype was correlated with the loss of endogenous DIRS-1 siRNAs in the knockout strain. By deep sequencing analysis of small RNAs from the AX2 wild type and the agnA- strain, the strong decrease of endogenous DIRS-1 siRNAs in the mutant strain (accounting for 70 %) could be confirmed. Further analysis of the data revealed an unequal distribution of DIRS-1 derived siRNAs along the retroelement in the wild type strain, since only very few of them matched the inverted terminal repeats (ITRs) and the 5’- half of the first open reading frame (ORF). Besides, sense and antisense siRNAs were asymmetrically distributed, as well. By using different reporter constructs it was shown indirectly that AgnA is necessary for the RrpC mediated production of secondary DIRS-1 siRNAs. These analyses also demonstrated an amplification of siRNAs in 5’- and in 3’-direction. Further analysis of the agnA- strain revealed that not only DIRS-1 sense transcripts but also ORF2 and ORF3 encoded proteins were enriched. In contrast, the ORF1 encoded protein GAG was equally expressed in the mutant and the wild type. This might reflect the unequal distribution of endogenous DIRS-1 siRNAs along the retrotransposon. Southern Blot and PCR-analyses showed that extrachromosomal DIRS-1 DNA molecules are present in the cytoplasm of angA- strains and that they are complementary to sense transcripts of intact DIRS-1 elements. Thus, the extrachromosomal DIRS-1 intermediates are likely incomplete cDNA molecules generated by the DIRS-1 encoded reverse transcriptase. One could hypothesize that virus like particles (VLPs) are the places of DIRS-1 cDNA synthesis. At least, DIRS-1 GAG proteins interact and fluorescence microscopy studies showed that they localize in distinct cytoplasmic foci which accumulate in close proximity to the nuclei.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dictyostelium discoideum is a social amoeba that serves as a model system for RNA interference and related mechanisms. Its position between plants and animals enables evolutionary snapshot of mechanisms and protein machinery involved in investigated subjects. MiRNAs are small regulatory RNAs that are evolutionary conserved and present in animals, plants, viruses and some prokaryotes. They have roles in development, cell growth and differentiation, apoptosis and their miss-regulation is associated with many diseases such as cancer, neurodegenerative disorders and diabetes. Recently, through sequencing of DNA libraries miRNAs have been discovered in D. discoideum. In this work, it has been shown that heterologues miRNA let-7 can be expressed and processed in D. discoideum. Expression of let-7 miRNA in social amoeba resulted in a strong developmental phenotype suggesting an overload of the processing/silencing system or/and endogenous targets. The various effects on prel-7 strain have been observed and characterized, serving as a background for postulation of miRNA roles. An artificial miRNA system has been established and imposed to D. discoideum, showing that miRNAs in Dictyostelium could mediate gene expression on the level of mRNA stability and on the posttranscriptional level. Furthermore, presence of translational inhibition as a type of gene control was shown for the first time in this organism. Due to it new structures representing co-localities of miRNA and target mRNA have been detected. Taken together, this work shows functional artificial miRNA system and postulates roles of endogenous small RNA in social amoeba.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Argonauten Proteine übernehmen vielfältige Funktionen in RNA vermittelten Signalwegen zur Genregulation und sind in eukaryotischen Organismen hoch konserviert. Obwohl das Repertoire an kleinen regulatorischen RNAs in D. discoideum schon früh untersucht wurde und dabei sowohl siRNAs als auch miRNAs identifiziert werden konnten, war die Funktion der fünf kodierten Argonauten Proteine zu Beginn meiner Arbeit noch völlig unbekannt. Im Fokus meiner Untersuchung standen die zwei Homologe AgnA und AgnB. Die molekularbiologische Charakterisierung von AgnA hat gezeigt, dass das Protein eine essentielle Funktion bei der posttranskriptionellen Regulation des Retrotransposons DIRS-1 hat. AgnA wird für die Generierung von über 90 % der DIRS-1 siRNAs benötigt, wobei unklar ist, ob die Slicer-Aktivität des Proteins relevant ist oder ob AgnA andere Proteine zur Generierung der kleinen RNAs rekrutiert. Mit Hilfe der Deep Sequencing Analyse kleiner RNAs im AgnA KO konnte die Abreicherung der DIRS-1 siRNAs bestätigt werden. Die Anreicherung von DIRS-1 sense und antisense Transkripten weist deutlich auf eine Deregulation des Retrotransposons bei Abwesenheit von AgnA hin. Der Verlust der AgnA abhängigen Regulationsebene ist nicht nur auf RNA- sondern auch auf DNA-Ebene nachweisbar, da im AgnA Knockout einzelsträngige extrachromosomale DIRS-1 Intermediate nachweisbar sind. Die Analyse dieser Strukturen mit Hilfe von Rasterkraftmikroskopie zeigt, dass die extrachromosomale DNA mit Proteinen assoziiert ist. Das Erscheinungsbild legt die Vermutung nahe, dass es sich um Virus ähnliche Partikel handeln könnte. Die Transposition der DIRS-1 Elemente konnte nicht nachgewiesen werden. Sie schlägt vermutlich fehl, da der zur Integration notwendige DNA-Doppelstrang nicht gebildet wird. Auch wenn der genaue Mechanismus der AgnA abhängigen DIRS-1 Regulation nicht vollständig aufgeklärt werden konnte, weisen die Ergebnisse darauf hin, dass AgnA nicht nur an der Biogenese der kleinen DIRS-1 siRNAs beteiligt ist, sondern auch weiter downstream, vermutlich innerhalb von Effektorkomplexen, als Regulator aktiv ist. AgnB ist nicht an der negativen Regulation des DIRS-1 Retrotransposons beteiligt. Im Gegenteil haben Experimente gezeigt, dass das Protein die Transkription des Elementes und die Bildung von DNA-Intermediaten eher positiv beeinflusst. Im Fall des Retrotransposons Skipper ist unklar, ob die wenigen siRNAs, die identifiziert worden sind, tatsächlich für die Regulation dieses Elementes genutzt werden. Der Knockout von AgnA hat eine Anreicherung der Skipper siRNAs zur Folge, wobei diese sehr variabel ist. Es konnten Skipper Transkripte nachgewiesen werden (Hinas et al., 2007), die wahrscheinlich die Vorläufermoleküle der siRNAs darstellen. Die Menge dieser Transkripte unterscheidet sich allerdings im Wildtyp und den untersuchten Knockout-Stämmen nicht. Bei der Untersuchung der miRNAs zeigte sich eine signifikante Anreicherung dieser regulatorischen RNAs im AgnA Knockout. Die Akkumulation kann durch die Expression von rekombinantem AgnA wieder auf Wildtyp Niveau gebracht werden. Die genaue Funktion von AgnA im miRNA Signalweg konnte aber nicht näher spezifiziert werden. Im Fall der beiden miRNAs konnte im Rahmen dieser Arbeit nachgewiesen werden, dass sie keine 2‘-O Methylierung besitzen und fast ausschließlich im Cytoplasma der Zelle vorliegen. Letzteres weist darauf hin, dass die untersuchten miRNAs ihre Zielgene vermutlich posttranskriptionell regulieren. Die Akkumulation von miRNAs im AgnA KO konnte ebenfalls durch Deep Sequencing Analysen verifiziert werden. Weiterhin wurden tRNA Fragmente gefunden, die im AgnA KO wesentlich stärker vertreten sind. Northern Blot Analysen haben gezeigt, dass ein zusätzliches Fragment der tRNA Asp akkumuliert, wenn AgnA nicht exprimiert wird. Möglicherweise ist AgnA am Umsatz der tRNA beteiligt. Die biologische Funktion der tRNA Fragmente in D. discoideum ist jedoch bisher ungeklärt. Bei der Suche nach putativen Interaktionspartnern konnte im Fall von AgnA das Protein DDB_G0268914 mittels Massenspektrometrie als putativer Interaktionspartner identifiziert werden. Dieses Protein zeigt Homologien zu MOV10 aus H. sapiens, das ebenfalls mit Argonauten Proteinen interagiert (Hock et al., 2007) und die Replikation von Retroviren unterdrückt (Burdick et al., 2010). Die Interaktion zwischen AgnA und dem MOV10 Homolog konnte bisher nicht mit anderen Ansätzen bestätigt werden. Darüber hinaus bleibt zu klären, ob der putative Interaktionsparter ebenfalls an der Regulation des Retrotransposons DIRS-1 beteiligt ist.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DNA methyltransferases of type Dnmt2 are a highly conserved protein family with enigmatic function. The aim of this work was to characterize DnmA, the Dnmt2 methyltransferase in Dictyostelium discoideum, and further to investigate its implication in DNA methylation and transcriptional gene silencing. The genome of the social amoeba Dictyostelium encodes DnmA as the sole DNA methyltransferase. The enzyme bears all ten characteristic DNA methyltransferase motifs in its catalytic domain. The DnmA mRNA was found by RT-PCR to be expressed during vegetative growth and down regulated during development. Investigations using fluorescence microscopy showed that both DnmA-myc and DnmA-GFP fusions predominantly localised to the nucleus. The function of DnmA remained initially unclear, but later experiment revealed that the enzyme is an active DNA methyltransferase responsible for all DNA (cytosine) methylation in Dictyostelium. Neither in gel retardation assays, nor by the yeast two hybrid system, clues on the functionality of DnmA could be obtained. However, immunological detection of the methylation mark with an α - 5mC antibody gave initial evidence that the DNA of Dictyostelium was methylated. Furthermore, addition of 5-aza-cytidine as demethylating agent to the Dictyostelium medium and subsequent in vitro incubation of the DNA isolated from these cells with recombinant DnmA showed that the enzyme binds slightly better to this target DNA. In order to investigate further the function of the protein, a gene knock-out for dnmA was generated. The gene was successfully disrupted by homologous recombination, the knock-out strain, however, did not show any obvious phenotype under normal laboratory conditions. To identify specific target sequences for DNA methylation, a microarray analysis was carried out. Setting a threshold of at least 1.5 fold for differences in the strength of gene expression, several such genes in the knock-out strain were chosen for further investigation. Among the up-regulated genes were the ESTs representing the gag and the RT genes respectively of the retrotransposon skipper. In addition Northern blot analysis confirmed the up-regulation of skipper in the DnmA knock-out strain. Bisufite treatment and sequencing of specific DNA stretches from skipper revealed that DnmA is responsible for methylation of mostly asymmetric cytosines. Together with skipper, DIRS-1 retrotransposon was found later also to be methylated but was not present on the microarray. Furthermore, skipper transcription was also up-regulated in strains that had genes disrupted encoding components of the RNA interference pathway. In contrast, DIRS 1 expression was not affected by a loss of DnmA but was strongly increased in the strain that had the RNA directed RNA polymerase gene rrpC disrupted. Strains generated by propagating the usual wild type Ax2 and the DnmA knock-out cells over 16 rounds in development were analyzed for transposon activity. Northern blot analysis revealed activation for skipper expression, but not for DIRS-1. A large number of siRNAs were found to be correspondent to the DIRS-1 sequence, suggesting concerted regulation of DIRS-1 expression by RNAi and DNA methylation. In contrast, no siRNAs corresponding to the standard skipper element were found. The data show that DNA methylation plays a crucial role in epigenetic gene regulation in Dictyostelium and that different, partially overlapping mechanisms control transposon silencing for skipper and DIRS-1. To elucidate the mechanism of targeting the protein to particular genes in the Dictyostelium genome, some more genes which were up-regulated in the DnmA knock-out strain were analyzed by bisulfite sequencing. The chosen genes are involved in the multidrug response in other species, but their function in Dictyostelium is uncertain. Bisulfite data showed that two of these genes were methylated at asymmetrical C-residues in the wild type, but not in DnmA knock-out cells. This suggested that DNA methylation in Dictyostelium is involved not only in transposon regulation but also in transcriptional silencing of specific genes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Das Protein Orb2, welches zum Xenopus CPEB homolog ist, erfüllt während der Spermatogenese von Drosophila melanogaster eine wesentliche Funktion. Das teilweise Ausschalten von orb2 führt zu Störungen in der Individualisierung der Spermatiden, Veränderung in der Morphologie und Lokalisation der Spermatidenkerne und damit verbunden zu männlicher Sterilität. Der weit gestreute Phänotyp spricht für eine regulatorische Funktion des Proteins, wie es aufgrund der Homologie zu CPEB zu erwarten ist. Orb2 mutante Weibchen zeigen dagegen keinen Phänotyp. Die Sterilität konnte mit spezifischen Rettungskonstrukten rückgängig gemacht werden, wobei die beiden Proteinformen in ihrer Funktion höchstwahrscheinlich äquivalent sind, da eine größere Menge an kleinem Protein das Fehlen des größeren ausgleichen kann. Beide Proteinformen lokalisieren in fast alle Stadien der Spermatogenese, wobei nur das kleinere auch in reifen Spermien persistiert. Zur Untersuchung der regulatorischen Funktion des Proteins Orb2 wurden zunächst drei mögliche Protein-Interaktionskandidaten analysiert. Obwohl ähnliche mutante Phänotypen in Gap und Cup ausgelöst wurden, lässt sich eine Interaktion bis jetzt mit diesen Kandidaten weder ausschließen noch bestätigen. Daneben zeigte das Protein Tob eine ähnliche Lokalisierung und einen deutlich ähnlicheren mutanten Phänotyp, wie er für Orb2 beschrieben wurde. Besonders auffällig ist die Lokalisation der Tob mRNA an die Spermatidenenden und die Verringerung der Transkriptmenge in der orb2-Mutante. Ob dieser Phänotyp durch den Verlust der regulatorischen Funktion von Orb2 hervorgerufen wird oder durch den späten Zeitpunkt der Transkription bedingt ist, muß in späteren Experimenten geklärt werden. Mit Hilfe eines Co-Immunpräzipitations-Experimentes wurde nach weiteren Proteininteraktionspartnern sowie nach Ziel-mRNAs gesucht, die durch Orb2 reguliert werden könnten. Dabei ergaben die massenspektrometrischen Analysen zwar Proteine, die mit der Translation selbst in Zusammenhang stehen, sowie einige regulatorische RNA-bindende Proteine, wiesen aber auch in Gestalt eines häufig nachgewiesenen Anhangsdrüsenproteins auf deutliche systematische Probleme hin. Auf genetischem Wege war bereits der Nachweis gelungen, dass die Protamine und mst77F, die strukturelle Komponenten der kompaktierten Kern-DNA sind, durch Orb2 in ihrer Translation reprimiert werden. Dieses Ergebnis wurde zum Teil bestätigt durch den Nachweis der Protamin mRNAs in den Eluaten aus dem Co-Immunpräzipitationsexperiment. Damit konnte zum ersten Mal in der Drosophila Spermatogenese das regulatorische Protein zu einer translationskontrollierten mRNA identifiziert werden.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ERI-1 und ihm homologe Proteine sind 3‘-5‘ Exoribonukleasen mit konservierten Funktionen in der Regulation von RNA Silencing sowie der Prozessierung ribosomaler RNA. Caenorhabditis elegans ERI-1 (Enhanced RNAi 1) enthält eine konservierte ERI-1_3’hExo_like EXOIII-Domäne, die siRNAs in vitro bindet und degradiert, und deren Inaktivierung eine RNAi-Hypersensitivität zur Folge hat. ERI-1 ist phylogenetisch konserviert, und homologe Proteine wurden Reiche-übergreifend in einer Vielzahl von Modellorganismen identifiziert. RNA-Silencing-reprimierende Eigenschaften dieser Proteine wurden in einigen Fällen charakterisiert. Zusätzlich wurde für eine Untergruppe ERI-1-homologer Proteine eine Funktion in der Biogenese der 5.8S ribosomalen RNA aufgezeigt: Katalyse des letzten Prozessierungsschritts während der Reifung des 5.8S rRNA 3‘-Endes. Diese Doppelfunktion ERI-1-homologer Proteine schlägt eine interessante Brücke zwischen evolutionär weit entfernten auf nicht-codierender RNA basierenden Mechanismen. In dieser Arbeit werden Ergebnisse präsentiert, die Charakteristika des pflanzlichen ERI-1-Homologs ERL1 in verschiedenen regulatorischen Zusammenhängen zum Gegenstand haben. ERL1 lokalisiert in Chloroplasten und zeigt keinerlei messbare Aktivität in Bezug auf die Regulierung von RNA Silencing. Im Gegensatz dazu konnte gezeigt werden, dass ERL1 eine wichtige Rolle während der Reifung der chloroplastischen 5S rRNA spielt. ERL1-supprimierende bzw. -überexprimierende transgene Pflanzen, zeigen unterschiedliche phänotypische Aberrationen. Diese beinhalten vielfarbige Blätter, reduziertes Wachstum und Fruchtbarkeit, sowie den Verlust Photosynthese-kompetenter Chloroplasten in gebleichten Sektoren. Diese Defekte werden dadurch verursacht, dass die Plastid-Entwicklung in einem frühen Stadium blockiert wird. Dies führt zu defekten Plastiden, die keine kanonischen internen Strukturen, einschließlich Grana, bilden können. Die gestörte Plastid-Entwicklung ist ein Resultat fehlerhafter Prozessierung ribosomaler RNAs und dem daraus folgenden Verlust plastidärer Transkription und Translation. Wenn ERL1 runterreguliert oder überexprimiert ist, akkumulieren 3‘-elongierte 5S rRNA-Moleküle, was Störungen in der Produktion der Ribosomen hervorruft. Die Reifung der 5S rRNA ist leit langem als Prozess bekannt, der viele aufeinander folgende endonukleolytische Spaltungen sowie exonukleolytische Rezessionen beinhaltet. Bis dato war die Gesamtheit der Exonukleasen während dieser Reifung jedoch nur lückenhaft bekannt. Die Ergebnisse dieser Arbeit zeigen, dass ERL1 eine wichtige Rolle in der Plastid-Entwicklung spielt, indem ERL1 den finalen Reifungsschritt des 5S rRNA 3‘-Endes katalysiert.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Obwohl die DNA Methyltransferase 2 (Dnmt2) hoch konserviert ist und zu der am weitesten verbreiteten eukaryotischen MTase-Familie gehört, ist ihre biologische Funktion nach wie vor unklar. Nachdem lange Zeit keine DNA Methylierungsaktivität nachgewiesen werden konnte, wurde vor einigen Jahren über geringe Mengen an 5-Methylcytosin (5mC) in Retroelementen der “Dnmt2-only”-Organismen D. melanogaster, D. discoideum und E. histolytica berichtet (Kunert et al. 2003; Fisher et al. 2004; Kuhlmann et al. 2005; Phalke et al. 2009). Als kurze Zeit später robuste Methylierung der tRNAAsp durch humane Dnmt2 gezeigt wurde (Goll et al. 2006), wurde zunächst eine Dualspezifität des Enzyms vorgeschlagen (Jeltsch et al. 2006). Neuere Daten zum 5mC-Status verschiedener „Dnmt2-only“-Organismen bilden Anlass für kontroverse Diskussionen über Ausmaß und Bedeutung der DNA Methyltransferaseaktivität von Dnmt2 (Schaefer et al. 2010a; Krauss et al. 2011). Die vorliegende Arbeit konzentriert sich auf die Identifizierung neuer RNA Substrate des Dnmt2-Homologs DnmA aus D. discoideum sowie die biologische Bedeutung der tRNA-Methylierung durch Dnmt2. Wie in anderen Organismen beschrieben, fungiert auch DnmA als tRNAAsp(GUC) MTase in vitro und in vivo. Zusätzlich konnte in vitro tRNAGlu(UUC) als neues Substrat der Dnmt2-Homologe aus D. discoideum und dem Menschen identifiziert werden. In einem Kooperationsprojekt wurde außerdem auch tRNAAsp-Methylierungsaktivität für das Dnmt2-Homolog aus S. pombe (Pmt1) nachgewiesen. Crosslink-RNA-Immunopräzipitationen (RNA-CLIP) mit anschließender Next-Generation-Sequenzierung der mit DnmA assoziierten RNAs zeigen, dass DnmA mit tRNA Fragmenten interagiert, die sich vom Anticodonloop bis in den T-loop erstrecken. Neben der tRNAAsp(GUC) und tRNAGlu(UUC/CUC) sind Fragmente der tRNAGly(GCC) verstärkt angereichert. Inwiefern diese Fragmente eine biologische Funktion haben oder spezifische Degradationsprodukte darstellen, ist noch ungeklärt. Interessanterweise sind von einigen tRNAs wenige Sequenzen von antisense-Fragmenten in den RNA-CLIP Daten zu finden, die etwas kürzer, jedoch exakt komplementär zu den genannten sense-Fragmenten sind. Besonders stark sind diese Fragmente der tRNAGlu(UUC) vertreten. In einem weiteren RNA-CLIP Experiment wurden U-snRNAs, snoRNA und intergenische Sequenzen mit DnmA angereichert. Bei nachfolgenden in vitro Methylierungsstudien konnte ausschließlich die U2-snRNA als potentielles Nicht-tRNA-Substrat der hDnmt2 und DnmA identifiziert werden. Da tRNA Modifikationen im Anticodonloop die Codonerkennung beeinflussen können, wurde ein System etabliert um die Translationseffizienz eines GFP-Reportergens in Wildtyp- und dnmAKO-Zellen zu messen. In D. discoideum wird das Aspartat-Codon GAU ca. zehnmal häufiger genutzt als das GAC Codon, allerdings ist nur eine tRNAAsp(GUC) im Genom der Amöbe kodiert. Aus diesem Grund wurde zusätzlich die Frage adressiert, inwiefern die DnmA-abhängige Methylierung dieser tRNA das „Wobbling“ beeinflusst. Dazu wurde dem Reportergen jeweils eine (GAU)5- und (GAC)5-Leadersequenz vorgeschaltet. Entgegen der Annahme wurde der (GAC)5-Leader in beiden Stämmen etwas effizienter translatiert. Insgesamt zeigte der dnmAKO-Stamm eine leicht erhöhte Translationseffizienz der Reportergene. Vergleichende Analysen zur Aufnahme von Fremd-DNA zeigten signifikant reduzierte Transformationseffizienzen mit einem integrierenden Plasmid in dnmAKO-Zellen. Ein weiterer dnmAKO-Stamm zeigte diesen Effekt jedoch nicht, wobei bei derselben Mutante eine deutlich reduzierte Aufnahme eines extrachromosomalen Plasmids zu verzeichnen war. Untersuchungen zum Einfluss von DnmA auf die Regulation des Retroelements skipper ergaben keinen Zusammenhang zwischen der Generierung kleiner RNAs und der erhöhten Transkription des Retrotransposons in dnmAKO-Zellen (Kuhlmann et al. 2005). Durch Kompensationsversuche sowie Experimente mit einer weiteren dnmAKO-Mutante konnte die Mobilisierung des Retrotransposons nicht eindeutig als DnmA-Funktion eingeordnet werden. In einem weiteren Projekt wurden die Bindung des m5C-bindenden Proteins EhMLBP aus E. histolytica an DNA mittels Rasterkraftmikroskopie abgebildet (Lavi et al. 2006). Neben vermutlich unspezifischen Endbindungsereignissen konnte eine bevorzugte Bindungsstelle des Proteins an LINE DNA (long intersperesed nuclear element) identifiziert werden. Möglicherweise fällt diese mit einem von zwei A/T-reichen Bereichen der LINE DNA zusammen, von denen vermutet wird, dass diese für die Bindung von EhMLBP an DNA von Bedeutung sind. Insgesamt bestätigen die Ergebnisse dieser Arbeit die tRNAAsp Methylierungsaktivität als konservierte Dnmt2-Funktion. Darüber hinaus erweitern sie das Substratspektrum der Dnmt2-Methyltransferasen im Bereich der tRNA. Außerdem wird erstmals ein potentielles Nicht-tRNA Substrat vorgeschlagen. Zusätzlich geben neu entdeckte Phänotypen Hinweise auf vielfältige zelluläre Dnmt2-Funktionen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hauptziel dieser Arbeit ist die Identifizierung, Verifizierung und Charakterisierung von Interaktionspartnern von HelF, einem Negativregulator der RNA-Interferenz in Dictyostelium discoideum (Popova et al. 2006). Es ist gelungen, die Interaktion von HelF und der 5‘ 3‘ Exonuklease Xrn1 nachzu-weisen, aber alle anderen Versuchen, bisher unbekannte Protein-Interaktionspartner zu identifizieren, schlugen fehl. Xrn1 ist in den Organismen D. melanogaster (Orban und Izaurralde 2005), C. elegans (Newbury und Woollard 2004) und A. thaliana (Gazzani et al. 2004) bereits als Regulator der RNA-Interferenz bekannt. Mit Aufreinigungen nach der TAP-Methode und mit dem Nanotrap wurde ebenfalls versucht, RNA-Interaktionspartner von HelF zu identifizieren. Es konnten in einigen Aufreinigungen putative, für HelF spezifische RNAs identifiziert werden, doch entweder es handelte sich nachweislich nicht um RNA oder die Reproduktion der Daten schlug trotz mehrfacher Versuche fehl. Bezüglich der zellulären Lokalisation von HelF und Xrn1 konnte gezeigt werden, dass HelF zusätzlich zur bekannten Lokalisation in Foci im Nukleus (Popova et al. 2006) vermutlich auch im Cytoplasma und dort angeordnet in mehreren Granula zu finden ist. Xrn1 ist nahezu ausschließlich im Cytoplasma lokalisiert, wo es in mehreren Foci organisiert ist. Es wird vermutet, dass es sich bei diesen Foci um Processing-Bodies (P-Bodies) handelt und dass möglicherweise Xrn1 und HelF in eben diesen P-Bodies co-lokalisieren. In der Entwicklung vom Einzeller zum mehrzelligen Organismus zeigen die Xrn1KO- und die HelFKO-Mutante jeweils einen eindeutigen Phänotyp, der vom Wildtyp abweicht. Die Phänotypen der beiden Mutanten unterscheiden sich deutlich voneinander. Beim Mischen von HelF-Knockout-Zellen mit grün fluoreszierenden Wildtyp-Zellen zeigt sich, dass beide Stämme innerhalb des sich entwickelnden Organismus an definierten Stellen lokalisieren. Entgegen den Erwartungen befinden sich die Zellen der Mutante in den Stadien „Finger“ und „Slug“ nicht hauptsächlich im vorderen Teil des Organismus, sondern sind auch im hinteren Teil, der später die Sporenmasse bildet, vertreten. Dies lässt vermuten, dass HelF-Knockout-Mutanten in gleichem Maße wie Wildtypzellen als Sporen in die nächste Generation übergehen. Weitere Mix-Experimente, in denen HelFKO-Zellen und Xrn1KO-Zellen mit grün fluoreszierenden Wildtypzellen gemischt wurden, belegen eindeutig, dass beide Knockoutmutanten in Konkurrenz zum Wildtyp bei der Generierung von Sporen und somit beim Übergang in die nächste Generation benachteiligt sind. Dies steht im Gegensatz zu den Ergebnissen der vorher beschriebenen Mix-Experimente, in denen der Organismus als Ganzes betrachtet wurde. Weiterhin konnte herausgefunden werden, dass Xrn1 ebenso wie HelF (Popova et al. 2006) eine Rolle als Negativregulator in der RNA-Interferenz innehat. Fraglich ist aber, ob HelF wie bisher angenommen auch Einfluss auf den Weg der Generierung von miRNAs nimmt, da in HelFKO für keinen der beiden miRNA-Kandidaten eine Hoch- bzw. Runterregulierung der reifen miRNAs im Vergleich zum Wildtyp beobachtet werden kann. Im Xrn1KO hingegen ist die reife miRNA ddi-mir-1176 im Vergleich zum Wildtyp hochreguliert. In Bezug auf die Generierung von siRNAs konnte herausgefunden werden, dass Xrn1 und HelF im Fall der Generierung von Skipper siRNAs regulierend eingreifen, dass aber nicht alle siRNAs von der negativen Regulierung durch HelF und Xrn1betroffen sind, was am Beispiel der DIRS-1-siRNAs belegt werden kann. Das von B. Popova entwickelte Modell (Popova 2005) bezüglich der Rolle von HelF in der RNA-Interferenz wurde basierend auf den neu gewonnenen Daten weiterentwickelt und um Xrn1 ergänzt, um die Funktionen von HelF und Xrn1 als Antagonisten der RNA-Interferenz näher zu beleuchten. Literatur: Gazzani, S., T. Lawrenson, et al. (2004). "A link between mRNA turnover and RNA interference in Arabidopsis." Science 306(5698): 1046-8. Newbury, S. and A. Woollard (2004). "The 5'-3' exoribonuclease xrn-1 is essential for ventral epithelial enclosure during C. elegans embryogenesis." Rna 10(1): 59-65. Orban, T. I. and E. Izaurralde (2005). "Decay of mRNAs targeted by RISC requires XRN1, the Ski complex, and the exosome." Rna 11(4): 459-69. Popova, B. (2005). HelF, a suppressor of RNAi mediated gene silencing in Dictyostelium discoideum. Genetik. Kassel, Universität Kassel. PhD: 200. Popova, B., M. Kuhlmann, et al. (2006). "HelF, a putative RNA helicase acts as a nuclear suppressor of RNAi but not antisense mediated gene silencing." Nucleic Acids Res 34(3): 773-84.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

• Premise of the study: Microsatellite markers were developed in Fosterella christophii (Bromeliaceae) to investigate the genetic diversity and population structure within the F. micrantha group, comprising F. christophii, F. micrantha, and F. villosula. • Methods and Results: Full-length cDNAs were isolated from F. christophii and sequenced on a Pacific Biosciences RS platform. A total of 1590 high-quality consensus isoforms were assembled into 971 unigenes containing 421 perfect microsatellites. Thirty primer sets were designed, of which 13 revealed a high level of polymorphism in three populations of F. christophii, with four to nine alleles per locus. Each of these 13 loci cross-amplified in the closely related species F. micrantha and F. villosula, with one to six and one to 11 alleles per locus, respectively. • Conclusions: The new markers are promising tools to study the population genetics of F. christophii and to discover species boundaries within the F. micrantha group.