4 resultados para R13 - General Equilibrium and Welfare Economic Analysis of Regional Economies
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
This exploratory study evaluated biophysical, cultural and socio-economic factors affecting crop production and land utilisation in the Nkonkobe Municipality, South Africa. The study sought to establish what farmers in the area perceive as serious threats to crop production, drivers for land abandonment, and how best current agricultural production could be intensified. The farmers’ perspectives were assessed through interviews using semi-structured and open-ended questionnaires. The results of the study revealed declining crop productivity and increase in land abandonment in the Municipality. The biophysical drivers of land abandonment were low and erratic rainfall and land degradation while the socio-economic drivers were labour shortages due to old age and youth movement to cities, lack of farming equipment and security concerns. The most abandoned crops were maize, sorghum and wheat. This trend was attributed to the labour intensiveness of cereal production and a shift in dietary preference to purchased rice. These findings should be factored in any programmes that seek to increase land utilisation and crop productivity in the Municipality.
Resumo:
Like elsewhere also in Kabul, Afghanistan urban and peri-urban agriculture (UPA) has often been accused of being resource inefficient and unsustainable causing negatives externalities to community health and to the surroundings. These arise from the inappropriate management and use of agricultural inputs, including often pesticides and inter-city wastes containing heavy metal residues and pathogens. To address these concerns, parallel studies with the aims of quantification of carbon (C), nitrogen (N), phosphorus (P) and potassium (K) horizontal and vertical fluxes; the assessment of heavy metal and pathogen contaminations of UPA produce, and an economic analysis of cereal, vegetable and grape production systems conducted for two years in UPA of Kabul from April 2008 to October 2009. The results of the studies from these three UPA diverse production systems can be abridged as follows: Biennial net balances in vegetable production systems were positive for N (80 kg ha-1 ), P (75 kg ha-1) and C (3,927 kg ha-1), negative for K (-205 kg ha-1), whereas in cereal production systems biennial horizontal balances were positive for P (20 kg ha-1 ) and C (4,900 kg ha-1) negative for N (-155 kg ha-1) and K (-355 kg ha-1) and in vineyards corresponding values were highly positive for N (295 kg ha-1), P (235 kg ha-1), C (3,362 kg ha-1) and slightly positive for K (5 kg ha-1). Regardless of N and C gaseous emissions, yearly leaching losses of N and P in selected vegetable gardens varied from 70 - 205 kg N ha-1 and 5 - 10 kg P ha-1. Manure and irrigation water contributed on average 12 - 79% to total Inputs of N, P, K and C, 10 - 53% to total inputs of C in the gardens and fields. The elevated levels of heavy metal and pathogen loads on fresh UPA vegetables reflected contamination from increasing traffic in the city, deposits of the past decades of war, lacking collection and treatment of raw inter-city wastes which call for solutions to protect consumer and producer health and increase reliability of UPA productions. A cost-revenue analysis of all inputs and outputs of cereal, vegetable and grapes production systems over two years showed substantial differences in net UPA household income. To confirm these results, more detailed studies are needed, but tailoring and managing the optimal application of inputs to crop needs will significantly enhance farmer’s better revenues as will as environmental and produce quality.
Resumo:
Investing in global environmental and adaptation benefits in the context of agriculture and food security initiatives can play an important role in promoting sustainable intensification. This is a priority for the Global Environment Facility (GEF), created in 1992 with a mandate to serve as financial mechanism of several multilateral environmental agreements. To demonstrate the nature and extent of GEF financing, we conducted an assessment of the entire portfolio over a period of two decades (1991–2011) to identify projects with direct links to agriculture and food security. A cohort of 192 projects and programs were identified and used as a basis for analyzing trends in GEF financing. The projects and programs together accounted for a total GEF financing of US$1,086.8 million, and attracted an additional US$6,343.5 million from other sources. The value-added of GEF financing for ecosystem services and resilience in production systems was demonstrated through a diversity of interventions in the projects and programs that utilized US$810.6 million of the total financing. The interventions fall into the following four main categories in accordance with priorities of the GEF: sustainable land management (US$179.3 million), management of agrobiodiversity (US$113.4 million), sustainable fisheries and water resource management (US$379.8 million), and climate change adaptation (US$138.1 million). By aligning GEF priorities with global aspirations for sustainable intensification of production systems, the study shows that it is possible to help developing countries tackle food insecurity while generating global environmental benefits for a healthy and resilient planet.
Resumo:
At many locations in Myanmar, ongoing changes in land use have negative environmental impacts and threaten natural ecosystems at local, regional and national scales. In particular, the watershed area of Inle Lake in eastern Myanmar is strongly affected by the environmental effects of deforestation and soil erosion caused by agricultural intensification and expansion of agricultural land, which are exacerbated by the increasing population pressure and the growing number of tourists. This thesis, therefore, focuses on land use changes in traditional farming systems and their effects on socio-economic and biophysical factors to improve our understanding of sustainable natural resource management of this wetland ecosystem. The main objectives of this research were to: (1) assess the noticeable land transformations in space and time, (2) identify the typical farming systems as well as the divergent livelihood strategies, and finally, (3) estimate soil erosion risk in the different agro-ecological zones surrounding the Inle Lake watershed area. GIS and remote sensing techniques allowed to identify the dynamic land use and land cover changes (LUCC) during the past 40 years based on historical Corona images (1968) and Landsat images (1989, 2000 and 2009). In this study, 12 land cover classes were identified and a supervised classification was used for the Landsat datasets, whereas a visual interpretation approach was conducted for the Corona images. Within the past 40 years, the main landscape transformation processes were deforestation (- 49%), urbanization (+ 203%), agricultural expansion (+ 34%) with a notably increase of floating gardens (+ 390%), land abandonment (+ 167%), and marshlands losses in wetland area (- 83%) and water bodies (- 16%). The main driving forces of LUCC appeared to be high population growth, urbanization and settlements, a lack of sustainable land use and environmental management policies, wide-spread rural poverty, an open market economy and changes in market prices and access. To identify the diverse livelihood strategies in the Inle Lake watershed area and the diversity of income generating activities, household surveys were conducted (total: 301 households) using a stratified random sampling design in three different agro-ecological zones: floating gardens (FG), lowland cultivation (LL) and upland cultivation (UP). A cluster and discriminant analysis revealed that livelihood strategies and socio-economic situations of local communities differed significantly in the different zones. For all three zones, different livelihood strategies were identified which differed mainly in the amount of on-farm and off-farm income, and the level of income diversification. The gross margin for each household from agricultural production in the floating garden, lowland and upland cultivation was US$ 2108, 892 and 619 ha-1 respectively. Among the typical farming systems in these zones, tomato (Lycopersicon esculentum L.) plantation in the floating gardens yielded the highest net benefits, but caused negative environmental impacts given the overuse of inorganic fertilizers and pesticides. The Revised Universal Soil Loss Equation (RUSLE) and spatial analysis within GIS were applied to estimate soil erosion risk in the different agricultural zones and for the main cropping systems of the study region. The results revealed that the average soil losses in year 1989, 2000 and 2009 amounted to 20, 10 and 26 t ha-1, respectively and barren land along the steep slopes had the highest soil erosion risk with 85% of the total soil losses in the study area. Yearly fluctuations were mainly caused by changes in the amount of annual precipitation and the dynamics of LUCC such as deforestation and agriculture extension with inappropriate land use and unsustainable cropping systems. Among the typical cropping systems, upland rainfed rice (Oryza sativa L.) cultivation had the highest rate of soil erosion (20 t ha-1yr-1) followed by sebesten (Cordia dichotoma) and turmeric (Curcuma longa) plantation in the UP zone. This study indicated that the hotspot region of soil erosion risk were upland mountain areas, especially in the western part of the Inle lake. Soil conservation practices are thus urgently needed to control soil erosion and lake sedimentation and to conserve the wetland ecosystem. Most farmers have not yet implemented soil conservation measures to reduce soil erosion impacts such as land degradation, sedimentation and water pollution in Inle Lake, which is partly due to the low economic development and poverty in the region. Key challenges of agriculture in the hilly landscapes can be summarized as follows: fostering the sustainable land use of farming systems for the maintenance of ecosystem services and functions while improving the social and economic well-being of the population, integrated natural resources management policies and increasing the diversification of income opportunities to reduce pressure on forest and natural resources.