3 resultados para Queensland. Bureau of Sugar Experiment Stations
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
Five laboratory incubation experiments were carried out to assess the salinity-induced changes in the microbial use of sugarcane filter cake added to soil. The first laboratory experiment was carried out to prove the hypothesis that the lower content of fungal biomass in a saline soil reduces the decomposition of a complex organic substrate in comparison to a non-saline soil under acidic conditions. Three different rates (0.5, 1.0, and 2.0%) of sugarcane filter cake were added to both soils and incubated for 63 days at 30°C. In the saline control soil without amendment, cumulative CO2 production was 70% greater than in the corresponding non-saline control soil, but the formation of inorganic N did not differ between these two soils. However, nitrification was inhibited in the saline soil. The increase in cumulative CO2 production by adding filter cake was similar in both soils, corresponding to 29% of the filter cake C at all three addition rates. Also the increases in microbial biomass C and biomass N were linearly related to the amount of filter cake added, but this increase was slightly higher for both properties in the saline soil. In contrast to microbial biomass, the absolute increase in ergosterol content in the saline soil was on average only half that in the non-saline soil and it showed also strong temporal changes during the incubation: A strong initial increase after adding the filter cake was followed by a rapid decline. The addition of filter cake led to immobilisation of inorganic N in both soils. This immobilisation was not expected, because the total C-to-total N ratio of the filter cake was below 13 and the organic C-to-organic N ratio in the 0.5 M K2SO4 extract of this material was even lower at 9.2. The immobilisation was considerably higher in the saline soil than in the non-saline soil. The N immobilisation capacity of sugarcane filter cake should be considered when this material is applied to arable sites at high rations. The second incubation experiment was carried out to examine the N immobilizing effect of sugarcane filter cake (C/N ratio of 12.4) and to investigate whether mixing it with compost (C/N ratio of 10.5) has any synergistic effects on C and N mineralization after incorporation into the soil. Approximately 19% of the compost C added and 37% of the filter cake C were evolved as CO2, assuming that the amendments had no effects on the decomposition of soil organic C. However, only 28% of the added filter cake was lost according to the total C and d13C values. Filter cake and compost contained initially significant concentrations of inorganic N, which was nearly completely immobilized between day 7 and 14 of the incubation in most cases. After day 14, N re-mineralization occurred at an average rate of 0.73 µg N g-1 soil d-1 in most amendment treatments, paralleling the N mineralization rate of the non-amended control without significant difference. No significant net N mineralization from the amendment N occurred in any of the amendment treatments in comparison to the control. The addition of compost and filter cake resulted in a linear increase in microbial biomass C with increasing amounts of C added. This increase was not affected by differences in substrate quality, especially the three times larger content of K2SO4 extractable organic C in the sugarcane filter cake. In most amendment treatments, microbial biomass C and biomass N increased until the end of the incubation. No synergistic effects could be observed in the mixture treatments of compost and sugarcane filter cake. The third 42-day incubation experiment was conducted to answer the questions whether the decomposition of sugarcane filter cake also result in immobilization of nitrogen in a saline alkaline soil and whether the mixing of sugarcane filter cake with glucose (adjusted to a C/N ratio of 12.5 with (NH4)2SO4) change its decomposition. The relative percentage CO2 evolved increased from 35% of the added C in the pure 0.5% filter cake treatment to 41% in the 0.5% filter cake +0.25% glucose treatment to 48% in the 0.5% filter cake +0.5% glucose treatment. The three different amendment treatments led to immediate increases in microbial biomass C and biomass N within 6 h that persisted only in the pure filter cake treatment until the end of the incubation. The fungal cell-membrane component ergosterol showed initially an over-proportionate increase in relation to microbial biomass C that fully disappeared at the end of the incubation. The cellulase activity showed a 5-fold increase after filter cake addition, which was not further increased by the additional glucose amendment. The cellulase activity showed an exponential decline to values around 4% of the initial value in all treatments. The amount of inorganic N immobilized from day 0 to day 14 increased with increasing amount of C added in comparison to the control treatment. Since day 14, the immobilized N was re-mineralized at rates between 1.31 and 1.51 µg N g-1 soil d-1 in the amendment treatments and was thus more than doubled in comparison with the control treatment. This means that the re-mineralization rate is independent from the actual size of the microbial residues pool and also independent from the size of the soil microbial biomass. Other unknown soil properties seem to form a soil-specific gate for the release of inorganic N. The fourth incubation experiment was carried out with the objective of assessing the effects of salt additions containing different anions (Cl-, SO42-, HCO3-) on the microbial use of sugarcane filter cake and dhancha leaves amended to inoculated sterile quartz sand. In the subsequent fifth experiment, the objective was to assess the effects of inoculum and temperature on the decomposition of sugar cane filter cake. In the fourth experiment, sugarcane filter cake led to significantly lower respiration rates, lower contents of extractable C and N, and lower contents of microbial biomass C and N than dhancha leaves, but to a higher respiratory quotient RQ and to a higher content of the fungal biomarker ergosterol. The RQ was significantly increased after salt addition, when comparing the average of all salinity treatments with the control. Differences in anion composition had no clear effects on the RQ values. In experiment 2, the rise in temperature from 20 to 40°C increased the CO2 production rate by a factor of 1.6, the O2 consumption rate by a factor of 1.9 and the ergosterol content by 60%. In contrast, the contents of microbial biomass N decreased by 60% and the RQ by 13%. The effects of the inoculation with a saline soil were in most cases negative and did not indicate a better adaptation of these organisms to salinity. The general effects of anion composition on microbial biomass and activity indices were small and inconsistent. Only the fraction of 0.5 M K2SO4 extractable C and N in non-fumigated soil was consistently increased in the 1.2 M NaHCO3 treatment of both experiments. In contrast to the small salinity effects, the quality of the substrate has overwhelming effects on microbial biomass and activity indices, especially on the fungal part of the microbial community.
Resumo:
Parasitic weeds of the genera Striga, Orobanche, and Phelipanche pose a severe problem for agriculture because they are difficult to control and are highly destructive to several crops. The present work was carried out during the period October, 2009 to February, 2012 to evaluate the potential of arbuscular mycorrhizal fungi (AMF) to suppress P. ramosa on tomatoes and to investigate the effects of air-dried powder and aqueous extracts from Euphorbia hirta on germination and haustorium initiation in Phelipanche ramosa. The work was divided into three parts: a survey of the indigenous mycorrhizal flora in Sudan, second, laboratory and greenhouse experiments (conducted in Germany and Sudan) to construct a base for the third part, which was a field trial in Sudan. A survey was performed in 2009 in the White Nile state, Sudan to assess AMF spore densities and root colonization in nine fields planted with 13 different important agricultural crops. In addition, an attempt was made to study the relationship between soil physico-chemical properties and AMF spore density, colonization rate, species richness and other diversity indices. The mean percentage of AMF colonization was 34%, ranging from 19-50%. The spore densities (expressed as per 100 g dry soil) retrieved from the rhizosphere of different crops were relatively high, varying from 344 to 1222 with a mean of 798. There was no correlation between spore densities in soil and root colonization percentage. A total of 45 morphologically classifiable species representing ten genera of AMF were detected with no correlation between the number of species found in a soil sample and the spore density. The most abundant genus was Glomus (20 species). The AMF diversity expressed by the Shannon–Weaver index was highest in sorghum (H\= 2.27) and Jews mallow (H\= 2.13) and lowest in alfalfa (H\= 1.4). With respect to crop species, the genera Glomus and Entrophospora were encountered in almost all crops, except for Entrophospora in alfalfa. Kuklospora was found only in sugarcane and sorghum. The genus Ambispora was recovered only in mint and okra, while mint and onion were the only species on which no Acaulospora was found. The hierarchical cluster analysis based on the similarity among AMF communities with respect to crop species overall showed that species compositions were relatively similar with the highest dissimilarity of about 25% separating three of the mango samples and the four sorghum samples from all other samples. Laboratory experiments studied the influence of root and stem exudates of three tomato varieties infected by three different Glomus species on germination of P. ramosa. Root exudates were collected 21or 42 days after transplanting (DAT) and stem exudates 42 DAT and tested for their effects on germination of P. ramosa seeds in vitro. The tomato varieties studied did not have an effect on either mycorrhizal colonization or Phelipanche germination. Germination in response to exudates from 42 day old mycorrhizal plants was significantly reduced in comparison to non-mycorrhizal controls. Germination of P. ramosa in response to root exudates from 21 day old plants was consistently higher than for 42 day-old plants (F=121.6; P<.0001). Stem diffusates from non-mycorrhizal plants invariably elicited higher germination than diffusates from the corresponding mycorrhizal ones and differences were mostly statistically significant. A series of laboratory experiments was undertaken to investigate the effects of aqueous extracts from Euphorbia hirta on germination, radicle elongation, and haustorium initiation in P. ramosa. P. ramosa seeds conditioned in water and subsequently treated with diluted E. hirta extract (10-25% v/v) displayed considerable germination (47-62%). Increasing extract concentration to 50% or more reduced germination in response to the synthetic germination stimulants GR24 and Nijmegen-1 in a concentration dependent manner. P. ramosa germlings treated with diluted Euphorbia extract (10-75 % v/v) displayed haustorium initiation comparable to 2, 5-Dimethoxy-p-benzoquinon (DMBQ) at 20 µM. Euphorbia extract applied during conditioning reduced haustorium initiation in a concentration dependent manner. E. hirta extract or air-dried powder, applied to soil, induced considerable P. ramosa germination. Pot experiments were undertaken in a glasshouse at the University of Kassel, Germany, to investigate the effects of P. ramosa seed bank on tomato growth parameters. Different Phelipanche seed banks were established by mixing the parasite seeds (0 - 32 mg) with the potting medium in each pot. P. ramosa reduced all tomato growth parameters measured and the reduction progressively increased with seed bank. Root and total dry matter accumulation per tomato plant were most affected. P. ramosa emergence, number of tubercles, and tubercle dry weight increased with the seed bank and were, invariably, maximal with the highest seed bank. Another objective was to determine if different AM fungi differ in their effects on the colonization of tomatoes with P. ramosa and the performance of P. ramosa after colonization. Three AMF species viz. GIomus intraradices, Glomus mosseae and Glomus Sprint® were used in this study. For the infection, P. ramosa seeds (8 mg) were mixed with the top 5 cm soil in each pot. No mycorrhizal colonization was detected in un-inoculated control plants. P. ramosa infested, mycorrhiza inoculated tomato plants had significantly lower AMF colonization compared to plants not infested with P. ramosa. Inoculation with G. intraradices, G. mosseae and Glomus Sprint® reduced the number of emerged P. ramosa plants by 29.3, 45.3 and 62.7% and the number of tubercles by 22.2, 42 and 56.8%, respectively. Mycorrhizal root colonization was positively correlated with number of branches and total dry matter of tomatoes. Field experiments on tomato undertaken in 2010/12 were only partially successful because of insect infestations which resulted in the complete destruction of the second run of the experiment. The effects of the inoculation with AMF, the addition of 10 t ha-1 filter mud (FM), an organic residues from sugar processing and 36 or 72 kg N ha-1 on the infestation of tomatoes with P. ramosa were assessed. In un-inoculated control plants, AMF colonization ranged between 13.4 to 22.1% with no significant differences among FM and N treatments. Adding AMF or FM resulted in a significant increase of branching in the tomato plants with no additive effects. Dry weights were slightly increased through FM application when no N was applied and significantly at 36 kg N ha-1. There was no effect of FM on the time until the first Phelipanche emerged while AMF and N application interacted. Especially AMF inoculation resulted in a tendency to delayed P. ramosa emergence. The marketable yield was extremely low due to the strong fruit infestation with insects mainly whitefly Bemisia tabaci and tomato leaf miner (Tuta absoluta). Tomatoes inoculated with varied mycorrhiza species displayed different response to the insect infestation, as G. intraradices significantly reduced the infestation, while G. mosseae elicited higher insect infestation. The results of the present thesis indicate that there may be a potential of developing management strategies for P. ramosa targeting the pre-attachment stage namely germination and haustorial initiation using plant extracts. However, ways of practical use need to be developed. If such treatments can be combined with AMF inoculation also needs to be investigated. Overall, it will require a systematic approach to develop management tools that are easily applicable and affordable to Sudanese farmers. It is well-known that proper agronomical practices such as the design of an optimum crop rotation in cropping systems, reduced tillage, promotion of cover crops, the introduction of multi-microbial inoculants, and maintenance of proper phosphorus levels are advantageous if the mycorrhiza protection method is exploited against Phelipanche ramosa infestation. Without the knowledge about the biology of the parasitic weeds by the farmers and basic preventive measures such as hygiene and seed quality control no control strategy will be successful, however.
Resumo:
An improved understanding of soil organic carbon (Corg) dynamics in interaction with the mechanisms of soil structure formation is important in terms of sustainable agriculture and reduction of environmental costs of agricultural ecosystems. However, information on physical and chemical processes influencing formation and stabilization of water stable aggregates in association with Corg sequestration is scarce. Long term soil experiments are important in evaluating open questions about management induced effects on soil Corg dynamics in interaction with soil structure formation. The objectives of the present thesis were: (i) to determine the long term impacts of different tillage treatments on the interaction between macro aggregation (>250 µm) and light fraction (LF) distribution and on C sequestration in plots differing in soil texture and climatic conditions. (ii) to determine the impact of different tillage treatments on temporal changes in the size distribution of water stable aggregates and on macro aggregate turnover. (iii) to evaluate the macro aggregate rebuilding in soils with varying initial Corg contents, organic matter (OM) amendments and clay contents in a short term incubation experiment. Soil samples were taken in 0-5 cm, 5-25 cm and 25-40 cm depth from up to four commercially used fields located in arable loess regions of eastern and southern Germany after 18-25 years of different tillage treatments with almost identical experimental setups per site. At each site, one large field with spatially homogenous soil properties was divided into three plots. One of the following three tillage treatments was carried in each plot: (i) Conventional tillage (CT) with annual mouldboard ploughing to 25-30 cm (ii) mulch tillage (MT) with a cultivator or disc harrow 10-15 cm deep, and (iii) no tillage (NT) with direct drilling. The crop rotation at each site consisted of sugar beet (Beta vulgaris L.) - winter wheat (Triticum aestivum L.) - winter wheat. Crop residues were left on the field and crop management was carried out following the regional standards of agricultural practice. To investigate the above mentioned research objectives, three experiments were conducted: Experiment (i) was performed with soils sampled from four sites in April 2010 (wheat stand). Experiment (ii) was conducted with soils sampled from three sites in April 2010, September 2011 (after harvest or sugar beet stand), November 2011 (after tillage) and April 2012 (bare soil or wheat stand). An incubation study (experiment (iii)) was performed with soil sampled from one site in April 2010. Based on the aforementioned research objectives and experiments the main findings were: (i) Consistent results were found between the four long term tillage fields, varying in texture and climatic conditions. Correlation analysis of the yields of macro aggregate against the yields of free LF ( ≤1.8 g cm-3) and occluded LF, respectively, suggested that the effective litter translocation in higher soil depths and higher litter input under CT and MT compensated in the long term the higher physical impact by tillage equipment than under NT. The Corg stocks (kg Corg m−2) in 522 kg soil, based on the equivalent soil mass approach (CT: 0–40 cm, MT: 0–38 cm, NT: 0–36 cm) increased in the order CT (5.2) = NT (5.2) < MT (5.7). Significantly (p ≤ 0.05) highest Corg stocks under MT were probably a result of high crop yields in combination with reduced physical tillage impact and effective litter incorporation, resulting in a Corg sequestration rate of 31 g C-2 m-2 yr-1. (ii) Significantly higher yields of macro aggregates (g kg-2 soil) under NT (732-777) and MT (680-726) than under CT (542-631) were generally restricted to the 0-5 cm sampling depth for all sampling dates. Temporal changes on aggregate size distribution were only small and no tillage induced net effect was detectable. Thus, we assume that the physical impact by tillage equipment was only small or the impact was compensated by a higher soil mixing and effective litter translocation into higher soil depths under CT, which probably resulted in a high re aggregation. (iii) The short term incubation study showed that macro aggregate yields (g kg-2 soil) were higher after 28 days in soils receiving OM (121.4-363.0) than in the control soils (22.0-52.0), accompanied by higher contents of microbial biomass carbon and ergosterol. Highest soil respiration rates after OM amendments within the first three days of incubation indicated that macro aggregate formation is a fast process. Most of the rebuilt macro aggregates were formed within the first seven days of incubation (42-75%). Nevertheless, it was ongoing throughout the entire 28 days of incubation, which was indicated by higher soil respiration rates at the end of the incubation period in OM amended soils than in the control soils. At the same time, decreasing carbon contents within macro aggregates over time indicated that newly occluded OM within the rebuilt macro aggregates served as Corg source for microbial biomass. The different clay contents played only minor role in macro aggregate formation under the particular conditions of the incubation study. Overall, no net changes on macro aggregation were identified in the short term. Furthermore, no indications for an effective Corg sequestration on the long term under NT in comparison to CT were found. The interaction of soil disturbance, litter distribution and the fast re aggregation suggested that a distinct steady state per tillage treatment in terms of soil aggregation was established. However, continuous application of MT with a combination of reduced physical tillage impact and effective litter incorporation may offer some potential in improving the soil structure and may therefore prevent incorporated LF from rapid decomposition and result in a higher C sequestration on the long term.