7 resultados para Quasi-stationary Distributions
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
Ausgangspunkt der Dissertation ist ein von V. Maz'ya entwickeltes Verfahren, eine gegebene Funktion f : Rn ! R durch eine Linearkombination fh radialer glatter exponentiell fallender Basisfunktionen zu approximieren, die im Gegensatz zu den Splines lediglich eine näherungsweise Zerlegung der Eins bilden und somit ein für h ! 0 nicht konvergentes Verfahren definieren. Dieses Verfahren wurde unter dem Namen Approximate Approximations bekannt. Es zeigt sich jedoch, dass diese fehlende Konvergenz für die Praxis nicht relevant ist, da der Fehler zwischen f und der Approximation fh über gewisse Parameter unterhalb der Maschinengenauigkeit heutiger Rechner eingestellt werden kann. Darüber hinaus besitzt das Verfahren große Vorteile bei der numerischen Lösung von Cauchy-Problemen der Form Lu = f mit einem geeigneten linearen partiellen Differentialoperator L im Rn. Approximiert man die rechte Seite f durch fh, so lassen sich in vielen Fällen explizite Formeln für die entsprechenden approximativen Volumenpotentiale uh angeben, die nur noch eine eindimensionale Integration (z.B. die Errorfunktion) enthalten. Zur numerischen Lösung von Randwertproblemen ist das von Maz'ya entwickelte Verfahren bisher noch nicht genutzt worden, mit Ausnahme heuristischer bzw. experimenteller Betrachtungen zur sogenannten Randpunktmethode. Hier setzt die Dissertation ein. Auf der Grundlage radialer Basisfunktionen wird ein neues Approximationsverfahren entwickelt, welches die Vorzüge der von Maz'ya für Cauchy-Probleme entwickelten Methode auf die numerische Lösung von Randwertproblemen überträgt. Dabei werden stellvertretend das innere Dirichlet-Problem für die Laplace-Gleichung und für die Stokes-Gleichungen im R2 behandelt, wobei für jeden der einzelnen Approximationsschritte Konvergenzuntersuchungen durchgeführt und Fehlerabschätzungen angegeben werden.
Resumo:
We consider a first order implicit time stepping procedure (Euler scheme) for the non-stationary Stokes equations in smoothly bounded domains of R3. Using energy estimates we can prove optimal convergence properties in the Sobolev spaces Hm(G) (m = 0;1;2) uniformly in time, provided that the solution of the Stokes equations has a certain degree of regularity. For the solution of the resulting Stokes resolvent boundary value problems we use a representation in form of hydrodynamical volume and boundary layer potentials, where the unknown source densities of the latter can be determined from uniquely solvable boundary integral equations’ systems. For the numerical computation of the potentials and the solution of the boundary integral equations a boundary element method of collocation type is used. Some simulations of a model problem are carried out and illustrate the efficiency of the method.
Resumo:
We discuss the possibility of identifying superheavy elements from the observation of their M-shell x-ray spectra, which might occur during the collision of a superheavy element with a heavy target. The same question is discussed for the possible observation of the x-rays from the quasimolecule (quasi-superheavy element) which is formed during such a heavy-ion collision. It is shown that it is very difficult, if not impossible, to determine any information about the interesting quantum electrodynamical effects from the M-shell x-ray spectra of these quasimolecules.
Resumo:
Due to the tremendous spin-orbit splitting of quasi-molecular levels in superheavy collision systems (Z = Z_1 + Z_2 {\ge\approx} 137) bombarding energy 0.5-6 MeV N{^-1}, unusual couplings may occur around Z \simeq 165. Experimental evidence for such a theoretically predicted coupling is discussed.
Resumo:
The potential energy curve of the system Ne-Ne is calculated for small internuclear distances from 0.005 to 3.0 au using a newly developed relativistic molecular Dirac-Fock-Slater code. A significant structure in the potential energy curve is found which leads to a nearly complete agreement with experimental differential elastic scattering cross sections. This demonstrates the presence of quasi-molecular effects in elastic ion-atom collisions at keV energies.
Resumo:
Numerous studies have proven an effect of a probable climate change on the hydrosphere’s different subsystems. In the 21st century global and regional redistribution of water has to be expected and it is very likely that extreme weather phenomenon will occur more frequently. From a global view the flood situation will exacerbate. In contrast to these discoveries the classical approach of flood frequency analysis provides terms like “mean flood recurrence interval”. But for this analysis to be valid there is a need for the precondition of stationary distribution parameters which implies that the flood frequencies are constant in time. Newer approaches take into account extreme value distributions with time-dependent parameters. But the latter implies a discard of the mentioned old terminology that has been used up-to-date in engineering hydrology. On the regional scale climate change affects the hydrosphere in various ways. So, the question appears to be whether in central Europe the classical approach of flood frequency analysis is not usable anymore and whether the traditional terminology should be renewed. In the present case study hydro-meteorological time series of the Fulda catchment area (6930 km²), upstream of the gauging station Bonaforth, are analyzed for the time period 1960 to 2100. At first a distributed catchment area model (SWAT2005) is build up, calibrated and finally validated. The Edertal reservoir is regulated as well by a feedback control of the catchments output in case of low water. Due to this intricacy a special modeling strategy has been necessary: The study area is divided into three SWAT basin models and an additional physically-based reservoir model is developed. To further improve the streamflow predictions of the SWAT model, a correction by an artificial neural network (ANN) has been tested successfully which opens a new way to improve hydrological models. With this extension the calibration and validation of the SWAT model for the Fulda catchment area is improved significantly. After calibration of the model for the past 20th century observed streamflow, the SWAT model is driven by high resolution climate data of the regional model REMO using the IPCC scenarios A1B, A2, and B1, to generate future runoff time series for the 21th century for the various sub-basins in the study area. In a second step flood time series HQ(a) are derived from the 21st century runoff time series (scenarios A1B, A2, and B1). Then these flood projections are extensively tested with regard to stationarity, homogeneity and statistical independence. All these tests indicate that the SWAT-predicted 21st-century trends in the flood regime are not significant. Within the projected time the members of the flood time series are proven to be stationary and independent events. Hence, the classical stationary approach of flood frequency analysis can still be used within the Fulda catchment area, notwithstanding the fact that some regional climate change has been predicted using the IPCC scenarios. It should be noted, however, that the present results are not transferable to other catchment areas. Finally a new method is presented that enables the calculation of extreme flood statistics, even if the flood time series is non-stationary and also if the latter exhibits short- and longterm persistence. This method, which is called Flood Series Maximum Analysis here, enables the calculation of maximum design floods for a given risk- or safety level and time period.