9 resultados para Quasi-periodic Multilayers
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
Ausgangspunkt der Dissertation ist ein von V. Maz'ya entwickeltes Verfahren, eine gegebene Funktion f : Rn ! R durch eine Linearkombination fh radialer glatter exponentiell fallender Basisfunktionen zu approximieren, die im Gegensatz zu den Splines lediglich eine näherungsweise Zerlegung der Eins bilden und somit ein für h ! 0 nicht konvergentes Verfahren definieren. Dieses Verfahren wurde unter dem Namen Approximate Approximations bekannt. Es zeigt sich jedoch, dass diese fehlende Konvergenz für die Praxis nicht relevant ist, da der Fehler zwischen f und der Approximation fh über gewisse Parameter unterhalb der Maschinengenauigkeit heutiger Rechner eingestellt werden kann. Darüber hinaus besitzt das Verfahren große Vorteile bei der numerischen Lösung von Cauchy-Problemen der Form Lu = f mit einem geeigneten linearen partiellen Differentialoperator L im Rn. Approximiert man die rechte Seite f durch fh, so lassen sich in vielen Fällen explizite Formeln für die entsprechenden approximativen Volumenpotentiale uh angeben, die nur noch eine eindimensionale Integration (z.B. die Errorfunktion) enthalten. Zur numerischen Lösung von Randwertproblemen ist das von Maz'ya entwickelte Verfahren bisher noch nicht genutzt worden, mit Ausnahme heuristischer bzw. experimenteller Betrachtungen zur sogenannten Randpunktmethode. Hier setzt die Dissertation ein. Auf der Grundlage radialer Basisfunktionen wird ein neues Approximationsverfahren entwickelt, welches die Vorzüge der von Maz'ya für Cauchy-Probleme entwickelten Methode auf die numerische Lösung von Randwertproblemen überträgt. Dabei werden stellvertretend das innere Dirichlet-Problem für die Laplace-Gleichung und für die Stokes-Gleichungen im R2 behandelt, wobei für jeden der einzelnen Approximationsschritte Konvergenzuntersuchungen durchgeführt und Fehlerabschätzungen angegeben werden.
Resumo:
We discuss the possibility of identifying superheavy elements from the observation of their M-shell x-ray spectra, which might occur during the collision of a superheavy element with a heavy target. The same question is discussed for the possible observation of the x-rays from the quasimolecule (quasi-superheavy element) which is formed during such a heavy-ion collision. It is shown that it is very difficult, if not impossible, to determine any information about the interesting quantum electrodynamical effects from the M-shell x-ray spectra of these quasimolecules.
Resumo:
The chemical elements up to Z = 172 are calculated with a relativistic Hartree-Fock-Slater program taking into account the effect of the extended nucleus. Predictions of the binding energies, the X-ray spectra and the number of electrons inside the nuclei are given for the inner electron shells. The predicted chemical behaviour will be discussed for a11 elements between Z = 104-120 and compared with previous known extrapolations. For the elements Z = 121-172 predictions of their chemistry and a proposal for the continuation of the Periodic Table are given. The eighth chemical period ends with Z = 164 located below Mercury. The ninth period starts with an alkaline and alkaline earth metal and ends immediately similarly to the second and third period with a noble gas at Z = 172. Mit einem relativistischen Hartree-Fock-Slater Rechenprogramm werden die chemischen Elemente bis zur Ordnungszahl 172 berechnet, wobei der Einfluß des ausgedehnten Kernes berücksichtigt wurde. Für die innersten Elektronenschalen werden Voraussagen über deren Bindungsenergie, das Röntgenspektrum und die Zahl der Elektronen im Kern gemacht. Die voraussichtliche Chemie der Elemente zwischen Z = 104 und 120 wird diskutiert und mit bereits vorhandenen Extrapolationen verglichen. Für die Elemente Z = 121-172 wird eine Voraussage über das chemische Verhalten gegeben, sowie ein Vorschlag für die Fortsetzung des Periodensystems gemacht. Die achte chemische Periode endet mit dem Element 164 im Periodensystem unter Quecksilber gelegen. Die neunte Periode beginnt mit einem Alkali- und Erdalkalimetall und endet sofort wieder wie in der zweiten und dritten Periode mit einem Edelgas bei Z = 172.
Resumo:
Due to the tremendous spin-orbit splitting of quasi-molecular levels in superheavy collision systems (Z = Z_1 + Z_2 {\ge\approx} 137) bombarding energy 0.5-6 MeV N{^-1}, unusual couplings may occur around Z \simeq 165. Experimental evidence for such a theoretically predicted coupling is discussed.
Resumo:
The potential energy curve of the system Ne-Ne is calculated for small internuclear distances from 0.005 to 3.0 au using a newly developed relativistic molecular Dirac-Fock-Slater code. A significant structure in the potential energy curve is found which leads to a nearly complete agreement with experimental differential elastic scattering cross sections. This demonstrates the presence of quasi-molecular effects in elastic ion-atom collisions at keV energies.
Resumo:
Relativistic density functional theory is widely applied in molecular calculations with heavy atoms, where relativistic and correlation effects are on the same footing. Variational stability of the Dirac Hamiltonian is a very important field of research from the beginning of relativistic molecular calculations on, among efforts for accuracy, efficiency, and density functional formulation, etc. Approximations of one- or two-component methods and searching for suitable basis sets are two major means for good projection power against the negative continuum. The minimax two-component spinor linear combination of atomic orbitals (LCAO) is applied in the present work for both light and super-heavy one-electron systems, providing good approximations in the whole energy spectrum, being close to the benchmark minimax finite element method (FEM) values and without spurious and contaminated states, in contrast to the presence of these artifacts in the traditional four-component spinor LCAO. The variational stability assures that minimax LCAO is bounded from below. New balanced basis sets, kinetic and potential defect balanced (TVDB), following the minimax idea, are applied with the Dirac Hamiltonian. Its performance in the same super-heavy one-electron quasi-molecules shows also very good projection capability against variational collapse, as the minimax LCAO is taken as the best projection to compare with. The TVDB method has twice as many basis coefficients as four-component spinor LCAO, which becomes now linear and overcomes the disadvantage of great time-consumption in the minimax method. The calculation with both the TVDB method and the traditional LCAO method for the dimers with elements in group 11 of the periodic table investigates their difference. New bigger basis sets are constructed than in previous research, achieving high accuracy within the functionals involved. Their difference in total energy is much smaller than the basis incompleteness error, showing that the traditional four-spinor LCAO keeps enough projection power from the numerical atomic orbitals and is suitable in research on relativistic quantum chemistry. In scattering investigations for the same comparison purpose, the failure of the traditional LCAO method of providing a stable spectrum with increasing size of basis sets is contrasted to the TVDB method, which contains no spurious states already without pre-orthogonalization of basis sets. Keeping the same conditions including the accuracy of matrix elements shows that the variational instability prevails over the linear dependence of the basis sets. The success of the TVDB method manifests its capability not only in relativistic quantum chemistry but also for scattering and under the influence of strong external electronic and magnetic fields. The good accuracy in total energy with large basis sets and the good projection property encourage wider research on different molecules, with better functionals, and on small effects.