2 resultados para Quality costs
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
In East Africa, Uganda is one of the major producers of organic pineapples for export. These pineapples are mainly produced in central Uganda and have to meet stringent quality standards before they can be allowed on international markets. These quality standards may put considerable strain on farmers and may not be wholly representative of their quality interpretation. The aim of this paper is therefore, to determine the Ugandan organic pineapple farmers’ quality perception, the activities they carry out in order to attain that quality and challenges (production, postharvest & marketing) faced on the same. Qualitative semi-structured interviews were carried out among 28 organic pineapple farmers in Kayunga district, central Uganda. Findings suggest that quality of organic pineapples is mainly perceived in terms of product attributes particularly appearance followed by food security provision. Certification plays a minor role in what farmers describe as organic quality. High production input costs (labour and coffee husks) coupled with a stagnant premium are some of the major challenges faced by farmers in attaining organic quality. The paper argues that currently there are concealed negative food security effects embroiled in these pineapple schemes. It is recommended that the National Organic Agricultural Movement of Uganda (NOGAMU) works with all relevant stakeholders to have the farmer premium price raised and an official organic policy enacted.
Resumo:
In most agroecosystems, nitrogen (N) is the most important nutrient limiting plant growth. One management strategy that affects N cycling and N use efficiency (NUE) is conservation agriculture (CA), an agricultural system based on a combination of minimum tillage, crop residue retention and crop rotation. Available results on the optimization of NUE in CA are inconsistent and studies that cover all three components of CA are scarce. Presently, CA is promoted in the Yaqui Valley in Northern Mexico, the country´s major wheat-producing area in which from 1968 to 1995, fertilizer application rates for the cultivation of irrigated durum wheat (Triticum durum L.) at 6 t ha-1 increased from 80 to 250 kg ha-1, demonstrating the high intensification potential in this region. Given major knowledge gaps on N availability in CA this thesis summarizes the current knowledge of N management in CA and provides insights in the effects of tillage practice, residue management and crop rotation on wheat grain quality and N cycling. Major aims of the study were to identify N fertilizer application strategies that improve N use efficiency and reduce N immobilization in CA with the ultimate goal to stabilize cereal yields, maintain grain quality, minimize N losses into the environment and reduce farmers’ input costs. Soil physical and chemical properties in CA were measured and compared with those in conventional systems and permanent beds with residue burning focusing on their relationship to plant N uptake and N cycling in the soil and how they are affected by tillage and N fertilizer timing, method and doses. For N fertilizer management, we analyzed how placement, time and amount of N fertilizer influenced yield and quality parameters of durum and bread wheat in CA systems. Overall, grain quality parameters, in particular grain protein concentration decreased with zero-tillage and increasing amount of residues left on the field compared with conventional systems. The second part of the dissertation provides an overview of applied methodologies to measure NUE and its components. We evaluated the methodology of ion exchange resin cartridges under irrigated, intensive agricultural cropping systems on Vertisols to measure nitrate leaching losses which through drainage channels ultimately end up in the Sea of Cortez where they lead to algae blooming. A throughout analysis of N inputs and outputs was conducted to calculate N balances in three different tillage-straw systems. As fertilizer inputs are high, N balances were positive in all treatments indicating the risk of N leaching or volatilization during or in subsequent cropping seasons and during heavy rain fall in summer. Contrary to common belief, we did not find negative effects of residue burning on soil nutrient status, yield or N uptake. A labeled fertilizer experiment with urea 15N was implemented in micro-plots to measure N fertilizer recovery and the effects of residual fertilizer N in the soil from summer maize on the following winter crop wheat. Obtained N fertilizer recovery rates for maize grain were with an average of 11% very low for all treatments.