2 resultados para Quadratic systems

em Universitätsbibliothek Kassel, Universität Kassel, Germany


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In der algebraischen Kryptoanalyse werden moderne Kryptosysteme als polynomielle, nichtlineare Gleichungssysteme dargestellt. Das Lösen solcher Gleichungssysteme ist NP-hart. Es gibt also keinen Algorithmus, der in polynomieller Zeit ein beliebiges nichtlineares Gleichungssystem löst. Dennoch kann man aus modernen Kryptosystemen Gleichungssysteme mit viel Struktur generieren. So sind diese Gleichungssysteme bei geeigneter Modellierung quadratisch und dünn besetzt, damit nicht beliebig. Dafür gibt es spezielle Algorithmen, die eine Lösung solcher Gleichungssysteme finden. Ein Beispiel dafür ist der ElimLin-Algorithmus, der mit Hilfe von linearen Gleichungen das Gleichungssystem iterativ vereinfacht. In der Dissertation wird auf Basis dieses Algorithmus ein neuer Solver für quadratische, dünn besetzte Gleichungssysteme vorgestellt und damit zwei symmetrische Kryptosysteme angegriffen. Dabei sind die Techniken zur Modellierung der Chiffren von entscheidender Bedeutung, so das neue Techniken entwickelt werden, um Kryptosysteme darzustellen. Die Idee für das Modell kommt von Cube-Angriffen. Diese Angriffe sind besonders wirksam gegen Stromchiffren. In der Arbeit werden unterschiedliche Varianten klassifiziert und mögliche Erweiterungen vorgestellt. Das entstandene Modell hingegen, lässt sich auch erfolgreich auf Blockchiffren und auch auf andere Szenarien erweitern. Bei diesen Änderungen muss das Modell nur geringfügig geändert werden.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In der vorliegenden Dissertation werden Systeme von parallel arbeitenden und miteinander kommunizierenden Restart-Automaten (engl.: systems of parallel communicating restarting automata; abgekürzt PCRA-Systeme) vorgestellt und untersucht. Dabei werden zwei bekannte Konzepte aus den Bereichen Formale Sprachen und Automatentheorie miteinander vescrknüpft: das Modell der Restart-Automaten und die sogenannten PC-Systeme (systems of parallel communicating components). Ein PCRA-System besteht aus endlich vielen Restart-Automaten, welche einerseits parallel und unabhängig voneinander lokale Berechnungen durchführen und andererseits miteinander kommunizieren dürfen. Die Kommunikation erfolgt dabei durch ein festgelegtes Kommunikationsprotokoll, das mithilfe von speziellen Kommunikationszuständen realisiert wird. Ein wesentliches Merkmal hinsichtlich der Kommunikationsstruktur in Systemen von miteinander kooperierenden Komponenten ist, ob die Kommunikation zentralisiert oder nichtzentralisiert erfolgt. Während in einer nichtzentralisierten Kommunikationsstruktur jede Komponente mit jeder anderen Komponente kommunizieren darf, findet jegliche Kommunikation innerhalb einer zentralisierten Kommunikationsstruktur ausschließlich mit einer ausgewählten Master-Komponente statt. Eines der wichtigsten Resultate dieser Arbeit zeigt, dass zentralisierte Systeme und nichtzentralisierte Systeme die gleiche Berechnungsstärke besitzen (das ist im Allgemeinen bei PC-Systemen nicht so). Darüber hinaus bewirkt auch die Verwendung von Multicast- oder Broadcast-Kommunikationsansätzen neben Punkt-zu-Punkt-Kommunikationen keine Erhöhung der Berechnungsstärke. Desweiteren wird die Ausdrucksstärke von PCRA-Systemen untersucht und mit der von PC-Systemen von endlichen Automaten und mit der von Mehrkopfautomaten verglichen. PC-Systeme von endlichen Automaten besitzen bekanntermaßen die gleiche Ausdrucksstärke wie Einwegmehrkopfautomaten und bilden eine untere Schranke für die Ausdrucksstärke von PCRA-Systemen mit Einwegkomponenten. Tatsächlich sind PCRA-Systeme auch dann stärker als PC-Systeme von endlichen Automaten, wenn die Komponenten für sich genommen die gleiche Ausdrucksstärke besitzen, also die regulären Sprachen charakterisieren. Für PCRA-Systeme mit Zweiwegekomponenten werden als untere Schranke die Sprachklassen der Zweiwegemehrkopfautomaten im deterministischen und im nichtdeterministischen Fall gezeigt, welche wiederum den bekannten Komplexitätsklassen L (deterministisch logarithmischer Platz) und NL (nichtdeterministisch logarithmischer Platz) entsprechen. Als obere Schranke wird die Klasse der kontextsensitiven Sprachen gezeigt. Außerdem werden Erweiterungen von Restart-Automaten betrachtet (nonforgetting-Eigenschaft, shrinking-Eigenschaft), welche bei einzelnen Komponenten eine Erhöhung der Berechnungsstärke bewirken, in Systemen jedoch deren Stärke nicht erhöhen. Die von PCRA-Systemen charakterisierten Sprachklassen sind unter diversen Sprachoperationen abgeschlossen und einige Sprachklassen sind sogar abstrakte Sprachfamilien (sogenannte AFL's). Abschließend werden für PCRA-Systeme spezifische Probleme auf ihre Entscheidbarkeit hin untersucht. Es wird gezeigt, dass Leerheit, Universalität, Inklusion, Gleichheit und Endlichkeit bereits für Systeme mit zwei Restart-Automaten des schwächsten Typs nicht semientscheidbar sind. Für das Wortproblem wird gezeigt, dass es im deterministischen Fall in quadratischer Zeit und im nichtdeterministischen Fall in exponentieller Zeit entscheidbar ist.