2 resultados para Pyrolytic and oxidative thermal degradation
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
The indigenous vegetation surrounding the river oases on the southern rim of the Taklamakan Desert has drastically diminished due to overexploitation as a source of fodder, timber and fuel for the human population. The change in the spatial extent of landscape forms and vegetation types around the Qira oasis was analyzed by comparing SPOT satellite images from 1998 with aerial photographs from 1956. The analysis was supplemented by field surveys in 1999 and 2000. The study is part of a joint Chinese-European project with the aim of assessing the current state of the foreland vegetation, of gathering information on the regeneration potential and of suggesting procedures for a sustainable management. With 33 mm of annual precipitation, plants can only grow if they have access to groundwater, lakes or rivers. Most of the available water comes into the desert via rivers in the form of seasonal flooding events resulting from snow melt in the Kun Lun Mountains. This water is captured in canal systems and used for irrigation of arable fields. Among the eight herbaceous and woody vegetation types and the type of open sand without any plant life that were mapped in 2000 in the oasis foreland, only the latter, the oasis border between cultivated land and open Populus euphratica forests and Tamarix ramosissima-Phragmites australis riverbed vegetation could be clearly identified on the photographs from 1956. The comparison of the images revealed that the oasis increased in area between 1956 and 2000. Shifting sand was successfully combated near to the oasis borders but increased in extent at the outward border of the foreland vegetation. In contrast to expectations, the area covered with Populus trees was smaller in 1956 than today due to some new forests in the north of the oasis that have grown up since 1977. Subfossil wood and leaf remnants of Populus euphratica that were found in many places in the foreland must have originated from forests destroyed before 1956. In the last 50 years, the main Qira River has shifted its bed significantly northward and developed a new furcation with a large new bed in 1986. The natural river dynamics are not only an important factor in forming the oasis’ landscape but also in providing the only possible regeneration sites for all occurring plant species. The conclusion of the study is that the oasis landscape has changed considerably in the last 50 years due to natural floodings and to vegetation degradation by human overexploitation. The trend towards decreasing width of the indigenous vegetation belt resulting from the advancing desert and the expansion of arable land is particularly alarming because a decrease in its protective function against shifting sand can be expected in the future.
Resumo:
The rapid growth in high data rate communication systems has introduced new high spectral efficient modulation techniques and standards such as LTE-A (long term evolution-advanced) for 4G (4th generation) systems. These techniques have provided a broader bandwidth but introduced high peak-to-average power ratio (PAR) problem at the high power amplifier (HPA) level of the communication system base transceiver station (BTS). To avoid spectral spreading due to high PAR, stringent requirement on linearity is needed which brings the HPA to operate at large back-off power at the expense of power efficiency. Consequently, high power devices are fundamental in HPAs for high linearity and efficiency. Recent development in wide bandgap power devices, in particular AlGaN/GaN HEMT, has offered higher power level with superior linearity-efficiency trade-off in microwaves communication. For cost-effective HPA design to production cycle, rigorous computer aided design (CAD) AlGaN/GaN HEMT models are essential to reflect real response with increasing power level and channel temperature. Therefore, large-size AlGaN/GaN HEMT large-signal electrothermal modeling procedure is proposed. The HEMT structure analysis, characterization, data processing, model extraction and model implementation phases have been covered in this thesis including trapping and self-heating dispersion accounting for nonlinear drain current collapse. The small-signal model is extracted using the 22-element modeling procedure developed in our department. The intrinsic large-signal model is deeply investigated in conjunction with linearity prediction. The accuracy of the nonlinear drain current has been enhanced through several issues such as trapping and self-heating characterization. Also, the HEMT structure thermal profile has been investigated and corresponding thermal resistance has been extracted through thermal simulation and chuck-controlled temperature pulsed I(V) and static DC measurements. Higher-order equivalent thermal model is extracted and implemented in the HEMT large-signal model to accurately estimate instantaneous channel temperature. Moreover, trapping and self-heating transients has been characterized through transient measurements. The obtained time constants are represented by equivalent sub-circuits and integrated in the nonlinear drain current implementation to account for complex communication signals dynamic prediction. The obtained verification of this table-based large-size large-signal electrothermal model implementation has illustrated high accuracy in terms of output power, gain, efficiency and nonlinearity prediction with respect to standard large-signal test signals.