4 resultados para Push-pull small molecules

em Universitätsbibliothek Kassel, Universität Kassel, Germany


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The migration of healthcare professionals from developing to developed countries, often aided by recruitment agencies, is a phenomenon of great international concern, as reflected in the construction of numerous ethical recruitment codes, which aim to govern the process. In an attempt to provide an overview of the situation, dealing specifically with the migration of nurses, as well as a critical and gender sensitive analysis of the codes, this paper follows three broad steps: first, it reviews the literature dedicated to the migration of nurses from developing to developed countries, adding a gendered account to more conventional push-pull explanations; second, it delineates the positive and negative effects that nurse migration has at the stakeholders levels of the individual, institutional, national and international level, paying particular attention to the role of gender; and third, it reviews and compares numerous codes for the ethical recruitment of nurses, highlighting the gendered rationale and consequences they may have. In showing that nurse migration is a gendered phenomenon, the paper questions whether the codes, written in gender neutral language, will come to bear unintended consequences that will effectively work to uphold gender stereotypes and inequalities.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We report on the self-consistent field solution of the Hartree-Fock-Slater equations using the finite-element method for the three small diatomic molecules N_2, BH and CO as examples. The quality of the results is not only better by two orders of magnitude than the fully numerical finite difference method of Laaksonen et al. but the method also requires a smaller number of grid points.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electronic states of small AI_n (n = 2 - 8) clusters have been calculated with a relativistic ab-initio MOLCAO Dirac-Fock-Slater method using numerical atomic DFS wave-functions. The excitation energies were obtained from a ground state calculation of neutral clusters, and in addition from negative clusters charged by half an electron in order to account for part of the relaxation. These energies are compared with experimental photoelectron spectra.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The interaction of short intense laser pulses with atoms/molecules produces a multitude of highly nonlinear processes requiring a non-perturbative treatment. Detailed study of these highly nonlinear processes by numerically solving the time-dependent Schrodinger equation becomes a daunting task when the number of degrees of freedom is large. Also the coupling between the electronic and nuclear degrees of freedom further aggravates the computational problems. In the present work we show that the time-dependent Hartree (TDH) approximation, which neglects the correlation effects, gives unreliable description of the system dynamics both in the absence and presence of an external field. A theoretical framework is required that treats the electrons and nuclei on equal footing and fully quantum mechanically. To address this issue we discuss two approaches, namely the multicomponent density functional theory (MCDFT) and the multiconfiguration time-dependent Hartree (MCTDH) method, that go beyond the TDH approximation and describe the correlated electron-nuclear dynamics accurately. In the MCDFT framework, where the time-dependent electronic and nuclear densities are the basic variables, we discuss an algorithm to calculate the exact Kohn-Sham (KS) potentials for small model systems. By simulating the photodissociation process in a model hydrogen molecular ion, we show that the exact KS potentials contain all the many-body effects and give an insight into the system dynamics. In the MCTDH approach, the wave function is expanded as a sum of products of single-particle functions (SPFs). The MCTDH method is able to describe the electron-nuclear correlation effects as the SPFs and the expansion coefficients evolve in time and give an accurate description of the system dynamics. We show that the MCTDH method is suitable to study a variety of processes such as the fragmentation of molecules, high-order harmonic generation, the two-center interference effect, and the lochfrass effect. We discuss these phenomena in a model hydrogen molecular ion and a model hydrogen molecule. Inclusion of absorbing boundaries in the mean-field approximation and its consequences are discussed using the model hydrogen molecular ion. To this end, two types of calculations are considered: (i) a variational approach with a complex absorbing potential included in the full many-particle Hamiltonian and (ii) an approach in the spirit of time-dependent density functional theory (TDDFT), including complex absorbing potentials in the single-particle equations. It is elucidated that for small grids the TDDFT approach is superior to the variational approach.