4 resultados para Pumping machinery, Electric.
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
Singularities of elastic and electric fields are investigated at the tip of a crack on the interface of two anisotropic piezo-electric media under various boundary conditions on the crack surfaces. The Griffith formulae are obtained for increments of energy functionals due to growth of the crack and the notion of the energy release matrix is introduced. Normalization conditions for bases of singular solution are proposed to adapt them to the energy, stress, and deformation fracture criteria. Connections between these bases are determined and additional properties of the deformation basis related to the notion of electric surface enthalpy are established.
Resumo:
It is found that the electric dipole polarizabilities of neutral atoms correlate very strongly with their first ionization potential within the groups of elements with the same angular momenta of the outermost electrons. As the latter values are known very accurately, this allows a very good (<30%) prediction of various atomic polarizabilities.
Resumo:
The soil amoebae Dictyostelium discoideum take up particles from their environment in order to obtain nutrition. The particle transits through the cell within a phagosome that fuses with organelles of different molecular compositions, undergoing a gradual degradation by different sets of hydrolytic enzymes. Griffiths’ concept of “phagosome individuality” predicts signaling from phagosomes into the cytoplasm, which might regulate many aspects of cell physiology. The finding that Dictyostelium cells depleted of the lysozyme AlyA or over-expressing the esterase Gp70 exhibit increased uptake of food particles, led to the postulation of a signaling cascade between endocytic compartments and the cytoskeletal uptake machinery at the plasma membrane. Assuming that Gp70 acts downstream of AlyA, gene-expression profiling of both mutants revealed different and overlapping sets of misregulated genes that might participate in this signaling cascade. Based on these results, we analyzed the effects of the artificial misregulation of six candidate genes by over-expression or negative genetic interference, in order to reconstruct at least part of the signaling pathway. SSB420 and SSL793 were chosen as candidates for the first signaling step, as they were up-regulated in AlyA-null cells and remained unaltered in the Gp70 over-expressing cells. The over-expression of SSB420 enhanced phagocytosis and raised the expression levels of Gp70, supporting its involvement in the signaling pathway between AlyA and Gp70 as a positive regulator of phagocytosis. However, this was not the case of cells over-expressing SSL793, as this mutation had no effects on phagocytosis. For the signaling downstream of Gp70, we studied four commonly misregulated genes in AlyA-depleted and Gp70 over-expressing cells. The expression levels of SLB350, SSB389 and TipD were lower in both mutants and therefore these were assumed as possible candidates for the negative regulation of phagocytosis. Cells depleted of SLB350 exhibited an increased phagocytic activity and no effect on Gp70 expression, proving its participation in the signaling pathway downstream of Gp70. Unlike SLB350, the disruption of the genes coding for SSB389 and TipD had no effects on particle uptake, excluding them from the pathway. The fourth candidate was Yipf1, the only gene that was commonly up-regulated in both mutants. Yet, the artificial over-expression of this protein had no effects on phagocytosis, so this candidate is also not included in the signaling pathway. Furthermore, localizing the products of the candidate genes within the cell helped unveiling several cellular organelles that receive signals from the phagosome and transduce them towards the uptake machinery.
Resumo:
The challenge of reducing carbon emission and achieving emission target until 2050, has become a key development strategy of energy distribution for each country. The automotive industries, as the important portion of implementing energy requirements, are making some related researches to meet energy requirements and customer requirements. For modern energy requirements, it should be clean, green and renewable. For customer requirements, it should be economic, reliable and long life time. Regarding increasing requirements on the market and enlarged customer quantity, EVs and PHEV are more and more important for automotive manufactures. Normally for EVs and PHEV there are two important key parts, which are battery package and power electronics composing of critical components. A rechargeable battery is a quite important element for achieving cost competitiveness, which is mainly used to story energy and provide continue energy to drive an electric motor. In order to recharge battery and drive the electric motor, power electronics group is an essential bridge to convert different energy types for both of them. In modern power electronics there are many different topologies such as non-isolated and isolated power converters which can be used to implement for charging battery. One of most used converter topology is multiphase interleaved power converter, pri- marily due to its prominent advantages, which is frequently employed to obtain optimal dynamic response, high effciency and compact converter size. Concerning its usage, many detailed investigations regarding topology, control strategy and devices have been done. In this thesis, the core research is to investigate some branched contents in term of issues analysis and optimization approaches of building magnetic component. This work starts with an introduction of reasons of developing EVs and PEHV and an overview of different possible topologies regarding specific application requirements. Because of less components, high reliability, high effciency and also no special safety requirement, non-isolated multiphase interleaved converter is selected as the basic research topology of founded W-charge project for investigating its advantages and potential branches on using optimized magnetic components. Following, all those proposed aspects and approaches are investigated and analyzed in details in order to verify constrains and advantages through using integrated coupled inductors. Furthermore, digital controller concept and a novel tapped-inductor topology is proposed for multiphase power converter and electric vehicle application.