3 resultados para Propagation velocity
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
Recently Itatani et al. [Nature 432, 876 (2004)] introduced the new concept of molecular orbital tomography, where high harmonic generation (HHG) is used to image electronic wave functions. We describe an alternative reconstruction form, using momentum instead of dipole matrix elements for the electron recombination step in HHG. We show that using this velocity-form reconstruction, one obtains better results than using the original length-form reconstruction. We provide numerical evidence for our claim that one has to resort to extremely short pulses to perform the reconstruction for an orbital with arbitrary symmetry. The numerical evidence is based on the exact solution of the time-dependent Schrödinger equation for 2D model systems to simulate the experiment. Furthermore we show that in the case of cylindrically symmetric orbitals, such as the N2 orbital that was reconstructed in the original work, one can obtain the full 3D wave function and not only a 2D projection of it. Vor kurzem führten Itatani et al. [Nature 432, 876 (2004)] das Konzept der Molelkülorbital-Tomographie ein. Hierbei wird die Erzeugung hoher Harmonischer verwendet, um Bilder von elektronischen Wellenfunktionen zu gewinnen. Wir beschreiben eine alternative Form der Rekonstruktion, die auf Impuls- statt Dipol-Matrixelementen für den Rekombinationsschritt bei der Erzeugung der Harmonischen basiert. Wir zeigen, dass diese "Geschwindigkeitsform" der Rekonstruktion bessere Ergebnisse als die ursprüngliche "Längenform" liefert. Wir zeigen numerische Beweise für unsere Behauptung, dass man zu extrem kurzen Laserpulsen gehen muss, um Orbitale mit beliebiger Symmetrie zu rekonstruieren. Diese Ergebnisse basieren auf der exakten Lösung der zeitabhängigen Schrödingergleichung für 2D-Modellsysteme. Wir zeigen ferner, dass für zylindersymmetrische Orbitale wie das N2-Orbital, welches in der oben zitierten Arbeit rekonstruiert wurde, das volle 3D-Orbital rekonstruiert werden kann, nicht nur seine 2D-Projektion.
Resumo:
The present dissertation is devoted to the construction of exact and approximate analytical solutions of the problem of light propagation in highly nonlinear media. It is demonstrated that for many experimental conditions, the problem can be studied under the geometrical optics approximation with a sufficient accuracy. Based on the renormalization group symmetry analysis, exact analytical solutions of the eikonal equations with a higher order refractive index are constructed. A new analytical approach to the construction of approximate solutions is suggested. Based on it, approximate solutions for various boundary conditions, nonlinear refractive indices and dimensions are constructed. Exact analytical expressions for the nonlinear self-focusing positions are deduced. On the basis of the obtained solutions a general rule for the single filament intensity is derived; it is demonstrated that the scaling law (the functional dependence of the self-focusing position on the peak beam intensity) is defined by a form of the nonlinear refractive index but not the beam shape at the boundary. Comparisons of the obtained solutions with results of experiments and numerical simulations are discussed.
Resumo:
Since dwarf napiergrass (Pennisetum purpureum Schumach.) must be propagated vegetatively due to lack of viable seeds, root splitting and stem cuttings are generally used to obtain true-to-type plant populations. These ordinary methods are laborious and costly, and are the greatest barriers for expanding the cultivation area of this crop. The objectives of this research were to develop nursery production of dwarf napiergrass in cell trays and to compare the efficiency of mechanical versus manual methods for cell-tray propagation and field transplanting. After defoliation of herbage either by a sickle (manually) or hand-mowing machine, every potential aerial tiller bud was cut to a single one for transplanting into cell trays as stem cuttings and placed in a glasshouse over winter. The following June, nursery plants were trimmed to a 25–cm length and transplanted in an experimental field (sandy soil) with 20,000 plants ha^(−1) either by shovel (manually) or Welsh onion planter. Labour time was recorded for each process. The manual defoliation of plants required 44% more labour time for preparing the stem cuttings (0.73 person-min. stemcutting^(−1)) compared to using hand-mowing machinery (0.51 person-min. stem-cutting^(−1)). In contrast, labour time for transplanting required an extra 0.30 person-min. m^(−2) (14%) using the machinery compared to manual transplanting, possibly due to the limited plot size for machinery operation. The transplanting method had no significant effect on plant establishment or plant growth, except for herbage yield 110 days after planting. Defoliation of herbage by machinery, production using a cell-tray nursery and mechanical transplanting reduced the labour intensity of dwarf napiergrass propagation.