10 resultados para Projection functions
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
The Bieberbach conjecture about the coefficients of univalent functions of the unit disk was formulated by Ludwig Bieberbach in 1916 [Bieberbach1916]. The conjecture states that the coefficients of univalent functions are majorized by those of the Koebe function which maps the unit disk onto a radially slit plane. The Bieberbach conjecture was quite a difficult problem, and it was surprisingly proved by Louis de Branges in 1984 [deBranges1985] when some experts were rather trying to disprove it. It turned out that an inequality of Askey and Gasper [AskeyGasper1976] about certain hypergeometric functions played a crucial role in de Branges' proof. In this article I describe the historical development of the conjecture and the main ideas that led to the proof. The proof of Lenard Weinstein (1991) [Weinstein1991] follows, and it is shown how the two proofs are interrelated. Both proofs depend on polynomial systems that are directly related with the Koebe function. At this point algorithms of computer algebra come into the play, and computer demonstrations are given that show how important parts of the proofs can be automated.
Resumo:
The collection of X chromosome insertions (PX) lethal lines, which was isolated from a screen for essential genes on the X chromosome, was characterized by means of cloning the insertion sites, mapping the sites within genomic DNA and determination of the associated reporter gene expresssion patterns. The established STS flanking the P element insertion sites were submitted to EMBL nucleotide databases and their in situ data together with the enhancer trap expression patterns have been deposited in the FlyView database. The characterized lines are now available to be used by the scientific community for a detailed analysis of the newly established lethal gene functions. One of the isolated genes on the X chromosome was the Drosophila gene Wnt5 (DWnt5). From two independent screens, one lethal and three homozygous viable alleles were recovered, allowing the identification of two distinct functions for DWnt5 in the fly. Observations on the developing nervous system of mutant embryos suggest that DWnt5 activity affects axon projection pattern. Elevated levels of DWNT5 activity in the midline cells of the central nervous system causes improper establishment and maintenance of the axonal pathways. Our analysis of the expression and mutant phenotype indicates that DWnt5 function in a process needed for proper organization of the nervous system. A second and novel function of DWnt5 is the control of the body size by regulation of the cell number rather than affecting the size of cells. Moreover, experimentally increased DWnt5 levels in a post-mitotic region of the eye imaginal disc causes abnormal cell cycle progression, resulting in additional ommatidia in the adult eye when compared to wild type. The increased cell number and the effects on the cell cycle after exposure to high DWNT5 levels is the result of a failure to downregulate cyclin B and therefore the unsuccessful establishment of a G1 arrest.
Resumo:
Student’s t-distribution has found various applications in mathematical statistics. One of the main properties of the t-distribution is to converge to the normal distribution as the number of samples tends to infinity. In this paper, by using a Cauchy integral we introduce a generalization of the t-distribution function with four free parameters and show that it converges to the normal distribution again. We provide a comprehensive treatment of mathematical properties of this new distribution. Moreover, since the Fisher F-distribution has a close relationship with the t-distribution, we also introduce a generalization of the F-distribution and prove that it converges to the chi-square distribution as the number of samples tends to infinity. Finally some particular sub-cases of these distributions are considered.
Resumo:
In dieser Dissertation präsentieren wir zunächst eine Verallgemeinerung der üblichen Sturm-Liouville-Probleme mit symmetrischen Lösungen und erklären eine umfassendere Klasse. Dann führen wir einige neue Klassen orthogonaler Polynome und spezieller Funktionen ein, welche sich aus dieser symmetrischen Verallgemeinerung ableiten lassen. Als eine spezielle Konsequenz dieser Verallgemeinerung führen wir ein Polynomsystem mit vier freien Parametern ein und zeigen, dass in diesem System fast alle klassischen symmetrischen orthogonalen Polynome wie die Legendrepolynome, die Chebyshevpolynome erster und zweiter Art, die Gegenbauerpolynome, die verallgemeinerten Gegenbauerpolynome, die Hermitepolynome, die verallgemeinerten Hermitepolynome und zwei weitere neue endliche Systeme orthogonaler Polynome enthalten sind. All diese Polynome können direkt durch das neu eingeführte System ausgedrückt werden. Ferner bestimmen wir alle Standardeigenschaften des neuen Systems, insbesondere eine explizite Darstellung, eine Differentialgleichung zweiter Ordnung, eine generische Orthogonalitätsbeziehung sowie eine generische Dreitermrekursion. Außerdem benutzen wir diese Erweiterung, um die assoziierten Legendrefunktionen, welche viele Anwendungen in Physik und Ingenieurwissenschaften haben, zu verallgemeinern, und wir zeigen, dass diese Verallgemeinerung Orthogonalitätseigenschaft und -intervall erhält. In einem weiteren Kapitel der Dissertation studieren wir detailliert die Standardeigenschaften endlicher orthogonaler Polynomsysteme, welche sich aus der üblichen Sturm-Liouville-Theorie ergeben und wir zeigen, dass sie orthogonal bezüglich der Fisherschen F-Verteilung, der inversen Gammaverteilung und der verallgemeinerten t-Verteilung sind. Im nächsten Abschnitt der Dissertation betrachten wir eine vierparametrige Verallgemeinerung der Studentschen t-Verteilung. Wir zeigen, dass diese Verteilung gegen die Normalverteilung konvergiert, wenn die Anzahl der Stichprobe gegen Unendlich strebt. Eine ähnliche Verallgemeinerung der Fisherschen F-Verteilung konvergiert gegen die chi-Quadrat-Verteilung. Ferner führen wir im letzten Abschnitt der Dissertation einige neue Folgen spezieller Funktionen ein, welche Anwendungen bei der Lösung in Kugelkoordinaten der klassischen Potentialgleichung, der Wärmeleitungsgleichung und der Wellengleichung haben. Schließlich erklären wir zwei neue Klassen rationaler orthogonaler hypergeometrischer Funktionen, und wir zeigen unter Benutzung der Fouriertransformation und der Parsevalschen Gleichung, dass es sich um endliche Orthogonalsysteme mit Gewichtsfunktionen vom Gammatyp handelt.
Resumo:
In this paper, we solve the duplication problem P_n(ax) = sum_{m=0}^{n}C_m(n,a)P_m(x) where {P_n}_{n>=0} belongs to a wide class of polynomials, including the classical orthogonal polynomials (Hermite, Laguerre, Jacobi) as well as the classical discrete orthogonal polynomials (Charlier, Meixner, Krawtchouk) for the specific case a = −1. We give closed-form expressions as well as recurrence relations satisfied by the duplication coefficients.
Resumo:
In a similar manner as in some previous papers, where explicit algorithms for finding the differential equations satisfied by holonomic functions were given, in this paper we deal with the space of the q-holonomic functions which are the solutions of linear q-differential equations with polynomial coefficients. The sum, product and the composition with power functions of q-holonomic functions are also q-holonomic and the resulting q-differential equations can be computed algorithmically.
Resumo:
Recently Itatani et al. [Nature 432, 876 (2004)] introduced the new concept of molecular orbital tomography, where high harmonic generation (HHG) is used to image electronic wave functions. We describe an alternative reconstruction form, using momentum instead of dipole matrix elements for the electron recombination step in HHG. We show that using this velocity-form reconstruction, one obtains better results than using the original length-form reconstruction. We provide numerical evidence for our claim that one has to resort to extremely short pulses to perform the reconstruction for an orbital with arbitrary symmetry. The numerical evidence is based on the exact solution of the time-dependent Schrödinger equation for 2D model systems to simulate the experiment. Furthermore we show that in the case of cylindrically symmetric orbitals, such as the N2 orbital that was reconstructed in the original work, one can obtain the full 3D wave function and not only a 2D projection of it. Vor kurzem führten Itatani et al. [Nature 432, 876 (2004)] das Konzept der Molelkülorbital-Tomographie ein. Hierbei wird die Erzeugung hoher Harmonischer verwendet, um Bilder von elektronischen Wellenfunktionen zu gewinnen. Wir beschreiben eine alternative Form der Rekonstruktion, die auf Impuls- statt Dipol-Matrixelementen für den Rekombinationsschritt bei der Erzeugung der Harmonischen basiert. Wir zeigen, dass diese "Geschwindigkeitsform" der Rekonstruktion bessere Ergebnisse als die ursprüngliche "Längenform" liefert. Wir zeigen numerische Beweise für unsere Behauptung, dass man zu extrem kurzen Laserpulsen gehen muss, um Orbitale mit beliebiger Symmetrie zu rekonstruieren. Diese Ergebnisse basieren auf der exakten Lösung der zeitabhängigen Schrödingergleichung für 2D-Modellsysteme. Wir zeigen ferner, dass für zylindersymmetrische Orbitale wie das N2-Orbital, welches in der oben zitierten Arbeit rekonstruiert wurde, das volle 3D-Orbital rekonstruiert werden kann, nicht nur seine 2D-Projektion.
Resumo:
The basic thermodynamic functions, the entropy, free energy, and enthalpy, for element 105 (hahnium) in electronic configurations d^3 s^2, d^3 sp, and d^4s^1 and for its +5 ionized state (5f^14) have been calculated as a function of temperature. The data are based on the results of the calculations of the corresponding electronic states of element 105 using the multiconfiguration Dirac-Fock method.
Resumo:
A program is presented for the construction of relativistic symmetry-adapted molecular basis functions. It is applicable to 36 finite double point groups. The algorithm, based on the projection operator method, automatically generates linearly independent basis sets. Time reversal invariance is included in the program, leading to additional selection rules in the non-relativistic limit.