114 resultados para Production engineering Data processing

em Universitätsbibliothek Kassel, Universität Kassel, Germany


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many examples for emergent behaviors may be observed in self-organizing physical and biological systems which prove to be robust, stable, and adaptable. Such behaviors are often based on very simple mechanisms and rules, but artificially creating them is a challenging task which does not comply with traditional software engineering. In this article, we propose a hybrid approach by combining strategies from Genetic Programming and agent software engineering, and demonstrate that this approach effectively yields an emergent design for given problems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Genetic Programming can be effectively used to create emergent behavior for a group of autonomous agents. In the process we call Offline Emergence Engineering, the behavior is at first bred in a Genetic Programming environment and then deployed to the agents in the real environment. In this article we shortly describe our approach, introduce an extended behavioral rule syntax, and discuss the impact of the expressiveness of the behavioral description to the generation success, using two scenarios in comparison: the election problem and the distributed critical section problem. We evaluate the results, formulating criteria for the applicability of our approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Among many other knowledge representations formalisms, Ontologies and Formal Concept Analysis (FCA) aim at modeling ‘concepts’. We discuss how these two formalisms may complement another from an application point of view. In particular, we will see how FCA can be used to support Ontology Engineering, and how ontologies can be exploited in FCA applications. The interplay of FCA and ontologies is studied along the life cycle of an ontology: (i) FCA can support the building of the ontology as a learning technique. (ii) The established ontology can be analyzed and navigated by using techniques of FCA. (iii) Last but not least, the ontology may be used to improve an FCA application.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The rapid growth in high data rate communication systems has introduced new high spectral efficient modulation techniques and standards such as LTE-A (long term evolution-advanced) for 4G (4th generation) systems. These techniques have provided a broader bandwidth but introduced high peak-to-average power ratio (PAR) problem at the high power amplifier (HPA) level of the communication system base transceiver station (BTS). To avoid spectral spreading due to high PAR, stringent requirement on linearity is needed which brings the HPA to operate at large back-off power at the expense of power efficiency. Consequently, high power devices are fundamental in HPAs for high linearity and efficiency. Recent development in wide bandgap power devices, in particular AlGaN/GaN HEMT, has offered higher power level with superior linearity-efficiency trade-off in microwaves communication. For cost-effective HPA design to production cycle, rigorous computer aided design (CAD) AlGaN/GaN HEMT models are essential to reflect real response with increasing power level and channel temperature. Therefore, large-size AlGaN/GaN HEMT large-signal electrothermal modeling procedure is proposed. The HEMT structure analysis, characterization, data processing, model extraction and model implementation phases have been covered in this thesis including trapping and self-heating dispersion accounting for nonlinear drain current collapse. The small-signal model is extracted using the 22-element modeling procedure developed in our department. The intrinsic large-signal model is deeply investigated in conjunction with linearity prediction. The accuracy of the nonlinear drain current has been enhanced through several issues such as trapping and self-heating characterization. Also, the HEMT structure thermal profile has been investigated and corresponding thermal resistance has been extracted through thermal simulation and chuck-controlled temperature pulsed I(V) and static DC measurements. Higher-order equivalent thermal model is extracted and implemented in the HEMT large-signal model to accurately estimate instantaneous channel temperature. Moreover, trapping and self-heating transients has been characterized through transient measurements. The obtained time constants are represented by equivalent sub-circuits and integrated in the nonlinear drain current implementation to account for complex communication signals dynamic prediction. The obtained verification of this table-based large-size large-signal electrothermal model implementation has illustrated high accuracy in terms of output power, gain, efficiency and nonlinearity prediction with respect to standard large-signal test signals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Die zunehmende Vernetzung der Informations- und Kommunikationssysteme führt zu einer weiteren Erhöhung der Komplexität und damit auch zu einer weiteren Zunahme von Sicherheitslücken. Klassische Schutzmechanismen wie Firewall-Systeme und Anti-Malware-Lösungen bieten schon lange keinen Schutz mehr vor Eindringversuchen in IT-Infrastrukturen. Als ein sehr wirkungsvolles Instrument zum Schutz gegenüber Cyber-Attacken haben sich hierbei die Intrusion Detection Systeme (IDS) etabliert. Solche Systeme sammeln und analysieren Informationen von Netzwerkkomponenten und Rechnern, um ungewöhnliches Verhalten und Sicherheitsverletzungen automatisiert festzustellen. Während signatur-basierte Ansätze nur bereits bekannte Angriffsmuster detektieren können, sind anomalie-basierte IDS auch in der Lage, neue bisher unbekannte Angriffe (Zero-Day-Attacks) frühzeitig zu erkennen. Das Kernproblem von Intrusion Detection Systeme besteht jedoch in der optimalen Verarbeitung der gewaltigen Netzdaten und der Entwicklung eines in Echtzeit arbeitenden adaptiven Erkennungsmodells. Um diese Herausforderungen lösen zu können, stellt diese Dissertation ein Framework bereit, das aus zwei Hauptteilen besteht. Der erste Teil, OptiFilter genannt, verwendet ein dynamisches "Queuing Concept", um die zahlreich anfallenden Netzdaten weiter zu verarbeiten, baut fortlaufend Netzverbindungen auf, und exportiert strukturierte Input-Daten für das IDS. Den zweiten Teil stellt ein adaptiver Klassifikator dar, der ein Klassifikator-Modell basierend auf "Enhanced Growing Hierarchical Self Organizing Map" (EGHSOM), ein Modell für Netzwerk Normalzustand (NNB) und ein "Update Model" umfasst. In dem OptiFilter werden Tcpdump und SNMP traps benutzt, um die Netzwerkpakete und Hostereignisse fortlaufend zu aggregieren. Diese aggregierten Netzwerkpackete und Hostereignisse werden weiter analysiert und in Verbindungsvektoren umgewandelt. Zur Verbesserung der Erkennungsrate des adaptiven Klassifikators wird das künstliche neuronale Netz GHSOM intensiv untersucht und wesentlich weiterentwickelt. In dieser Dissertation werden unterschiedliche Ansätze vorgeschlagen und diskutiert. So wird eine classification-confidence margin threshold definiert, um die unbekannten bösartigen Verbindungen aufzudecken, die Stabilität der Wachstumstopologie durch neuartige Ansätze für die Initialisierung der Gewichtvektoren und durch die Stärkung der Winner Neuronen erhöht, und ein selbst-adaptives Verfahren eingeführt, um das Modell ständig aktualisieren zu können. Darüber hinaus besteht die Hauptaufgabe des NNB-Modells in der weiteren Untersuchung der erkannten unbekannten Verbindungen von der EGHSOM und der Überprüfung, ob sie normal sind. Jedoch, ändern sich die Netzverkehrsdaten wegen des Concept drif Phänomens ständig, was in Echtzeit zur Erzeugung nicht stationärer Netzdaten führt. Dieses Phänomen wird von dem Update-Modell besser kontrolliert. Das EGHSOM-Modell kann die neuen Anomalien effektiv erkennen und das NNB-Model passt die Änderungen in Netzdaten optimal an. Bei den experimentellen Untersuchungen hat das Framework erfolgversprechende Ergebnisse gezeigt. Im ersten Experiment wurde das Framework in Offline-Betriebsmodus evaluiert. Der OptiFilter wurde mit offline-, synthetischen- und realistischen Daten ausgewertet. Der adaptive Klassifikator wurde mit dem 10-Fold Cross Validation Verfahren evaluiert, um dessen Genauigkeit abzuschätzen. Im zweiten Experiment wurde das Framework auf einer 1 bis 10 GB Netzwerkstrecke installiert und im Online-Betriebsmodus in Echtzeit ausgewertet. Der OptiFilter hat erfolgreich die gewaltige Menge von Netzdaten in die strukturierten Verbindungsvektoren umgewandelt und der adaptive Klassifikator hat sie präzise klassifiziert. Die Vergleichsstudie zwischen dem entwickelten Framework und anderen bekannten IDS-Ansätzen zeigt, dass der vorgeschlagene IDSFramework alle anderen Ansätze übertrifft. Dies lässt sich auf folgende Kernpunkte zurückführen: Bearbeitung der gesammelten Netzdaten, Erreichung der besten Performanz (wie die Gesamtgenauigkeit), Detektieren unbekannter Verbindungen und Entwicklung des in Echtzeit arbeitenden Erkennungsmodells von Eindringversuchen.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Presentation given at the Al-Azhar Engineering First Conference, AEC’89, Dec. 9-12 1989, Cairo, Egypt. The paper presented at AEC'89 suggests an infinite storage scheme divided into one volume which is online and an arbitrary number of off-line volumes arranged into a linear chain which hold records which haven't been accessed recently. The online volume holds the records in sorted order (e.g. as a B-tree) and contains shortest prefixes of keys of records already pushed offline. As new records enter, older ones are retired to the first volume which is going offline next. Statistical arguments are given for the rate at which an off-line volume needs to be fetched to reload a record which had been retired before. The rate depends on the distribution of access probabilities as a function of time. Applications are medical records, production records or other data which need to be kept for a long time for legal reasons.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Analysis by reduction is a linguistically motivated method for checking correctness of a sentence. It can be modelled by restarting automata. In this paper we propose a method for learning restarting automata which are strictly locally testable (SLT-R-automata). The method is based on the concept of identification in the limit from positive examples only. Also we characterize the class of languages accepted by SLT-R-automata with respect to the Chomsky hierarchy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tagungsband - Vorträge vom Automation Symposium 2006

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Der Anteil dezentraler eingebetteter Systeme steigt in zahlreichen Andwendungsfeldern, wie der Kfz-Elektronik oder der Anlagenautomatisierung [ScZu03]. Zudem steigen die Anforderungen and die Flexibilität und den Funktionsumfang moderner automatisierungs-technischer Systeme. Der Einsatz agentenorientierter Methoden ist diesbezüglich ein geeigneter Ansatz diesen Anforderungen gerecht zu werden [WGU03]. Mit Agenten können flexible, anpassungsfähige Softwaresysteme entwickelt werden, welche die Verteilung von Informationen, Aufgaben, Ressourcen oder Entscheidungsprozessen der realen Problemstellung im Softwaresystem widerspiegeln. Es ist somit möglich, die gewünschte Flexibilität des Systems, bezüglich der Struktur oder des Verhaltens gezielt zu entwerfen. Nachteilig ist jedoch der Indeterminismus des Verhaltens des Gesamtsystems, der sich aufgrund von schwer vorhersagbaren Interaktionen ergibt [Jen00]. Dem gegenüber stehen statische Softwaresysteme, welche zwar einen hohen Determinismus aufweisen aber wenig flexibel in Bezug auf Änderungen der Struktur des Systems oder des Ablaufs des realen Prozesses sind. Mit der steigenden Komplexität der Systeme ist allerdings selbst mit einem statischen Entwurf die Vorhersagbarkeit immer weniger zu gewährleisten. Die Zahl der möglichen Zustände einer Anlage wird mit der Berücksichtigung von allen möglichen Fehlern, Ausfällen und externen Einflüssen (dynamische Umgebung) so groß, daß diese mit vertretbarem Aufwand kaum noch erfassbar sind und somit auch nicht behandelt werden können. Das von der DFG geförderten Projekt AVE [AVE05], welches in Kooperation mit dem Institut für Automatisierungs- und Softwaretechnik der Universität Stuttgart bearbeitet wird, beschäftigt sich in diesem Kontext mit dem Konflikt, die Vorteile der Flexibilität und Anpassungsfähigkeit von agentenorientierter Software mit den spezifischen Anforderungen der Domäne der Echtzeitsysteme, wie Zeit- und Verlässlichkeitsanforderungen, zu verknüpfen. In einer detaillierten Analyse dieser Anforderungen wurde untersucht, wie die Eigenschaften der Anpassungsfähigkeit und Flexibilität prinzipiell die Anforderungen an Echtzeit- und Verlässlichkeitseigenschaften beeinflussen und wie umgekehrt Anforderungen an Echtzeit- und Verlässlichkeitseigenschaften die Anpassungsfähigkeit und Flexibilität beschränken können. Aufbauend auf diesen Erkenntnissen werden Methoden und Konzepte für den Entwurf und die Implementierung von Agentensystemen auf gängiger Automatisierungshardware, insbesondere Speicher Programmierbare Steuerungen (SPS), entwickelt. In diesem Rahmen wird ein Konzept für die Modellierung von Sicherheit in Agentensystemen vorgestellt, welches insbesondere den modularen Charakter von Agenten berücksichtigt. Kernaspekt ist es, dem Entwickler einen Rahmen vorzugeben, der ihn dabei unterstützt ein möglichst lückenloses Sicherheitskonzept zu erstellen und ihm dabei genug Freiheiten lässt den Aufwand für die Strategien zur Fehlererkennung, Fehlerdiagnose und Fehlerbehandlung je nach Anforderung für jedes Modul individuell festzulegen. Desweiteren ist besonderer Wert darauf gelegt worden, dass die verwendeten Darstellungen und Diagramme aus der Domäne stammen und eine gute Vorlage für die spätere Implementierung auf automatisierungstechnischer Hardware bieten.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Data mining means to summarize information from large amounts of raw data. It is one of the key technologies in many areas of economy, science, administration and the internet. In this report we introduce an approach for utilizing evolutionary algorithms to breed fuzzy classifier systems. This approach was exercised as part of a structured procedure by the students Achler, Göb and Voigtmann as contribution to the 2006 Data-Mining-Cup contest, yielding encouragingly positive results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vorträge / Präsentationen des Automation Symposiums 2008

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A conceptual information system consists of a database together with conceptual hierarchies. The management system TOSCANA visualizes arbitrary combinations of conceptual hierarchies by nested line diagrams and allows an on-line interaction with a database to analyze data conceptually. The paper describes the conception of conceptual information systems and discusses the use of their visualization techniques for on-line analytical processing (OLAP).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

While most data analysis and decision support tools use numerical aspects of the data, Conceptual Information Systems focus on their conceptual structure. This paper discusses how both approaches can be combined.