1 resultado para Potential Materials
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
A comparison between the charge transport properties in low molecular amorphous thin films of spiro-linked compound and their corresponding parent compound has been demonstrated. The field-effect transistor method is used for extracting physical parameters such as field-effect mobility of charge carriers, ON/OFF ratios, and stability. In addition, phototransistors have been fabricated and demonstrated for the first time by using organic materials. In this case, asymmetrically spiro-linked compounds are used as active materials. The active materials used in this study can be divided into three classes, namely Spiro-linked compounds (symmetrically spiro-linked compounds), the corresponding parent-compounds, and photosensitive spiro-linked compounds (asymmetrically spiro-linked com-pounds). Some of symmetrically spiro-linked compounds used in this study were 2,2',7,7'-Tetrakis-(di-phenylamino)-9,9'-spirobifluorene (Spiro-TAD),2,2',7,7'-Tetrakis-(N,N'-di-p-methylphenylamino)-9,9'-spirobifluorene (Spiro-TTB), 2,2',7,7'-Tetra-(m-tolyl-phenylamino)-9,9'-spirobifluorene (Spiro-TPD), and 2,2Ž,7,7Ž-Tetra-(N-phenyl-1-naphtylamine)-9,9Ž-spirobifluorene (Spiro alpha-NPB). Related parent compounds of the symmetrically spiro-linked compound used in this study were N,N,N',N'-Tetraphenylbenzidine (TAD), N,N,N',N'-Tetrakis(4-methylphenyl)benzidine (TTB), N,N'-Bis(3-methylphenyl)-(1,1'-biphenyl)-4,4'-diamine (TPD), and N,N'-Diphenyl-N,N'-bis(1-naphthyl)-1,1'-biphenyl-4,4'-diamine (alpha-NPB). The photosensitive asymmetrically spiro-linked compounds used in this study were 2,7-bis-(N,N'-diphenylamino)-2',7'-bis(biphenyl-4-yl)-9,9'-spirobifluorene (Spiro-DPSP), and 2,7-bis-(N,N'-diphenylamino)-2',7'-bis(spirobifluorene-2-yl)-9,9'-spirobifluorene (Spiro-DPSP^2). It was found that the field-effect mobilities of charge carriers in thin films of symmetrically spiro-linked compounds and their corresponding parent compounds are in the same order of magnitude (~10^-5 cm^2/Vs). However, the thin films of the parent compounds were easily crystallized after the samples have been exposed in ambient atmosphere and at room temperature for three days. In contrast, the thin films and the transistor characteristics of symmetrically spiro-linked compound did not change significantly after the samples have been stored in ambient atmosphere and at room temperature for several months. Furthermore, temperature dependence of the mobility was analyzed in two models, namely the Arrhenius model and the Gaussian Disorder model. The Arrhenius model tends to give a high value of the prefactor mobility. However, it is difficult to distinguish whether the temperature behaviors of the material under consideration follows the Arrhenius model or the Gaussian Disorder model due to the narrow accessible range of the temperatures. For the first time, phototransistors have been fabricated and demonstrated by using organic materials. In this case, asymmetrically spiro-linked compounds are used as active materials. Intramolecular charge transfer between a bis(diphenylamino)biphenyl unit and a sexiphenyl unit leads to an increase in charge carrier density, providing the amplification effect. The operational responsivity of better than 1 A/W can be obtained for ultraviolet light at 370 nm, making the device interesting for sensor applications. This result offers a new potential application of organic thin film phototransistors as low-light level and low-cost visible blind ultraviolet photodetectors.