3 resultados para Portlet-based application

em Universitätsbibliothek Kassel, Universität Kassel, Germany


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Die Bedeutung des Dienstgüte-Managements (SLM) im Bereich von Unternehmensanwendungen steigt mit der zunehmenden Kritikalität von IT-gestützten Prozessen für den Erfolg einzelner Unternehmen. Traditionell werden zur Implementierung eines wirksamen SLMs Monitoringprozesse in hierarchischen Managementumgebungen etabliert, die einen Administrator bei der notwendigen Rekonfiguration von Systemen unterstützen. Auf aktuelle, hochdynamische Softwarearchitekturen sind diese hierarchischen Ansätze jedoch nur sehr eingeschränkt anwendbar. Ein Beispiel dafür sind dienstorientierte Architekturen (SOA), bei denen die Geschäftsfunktionalität durch das Zusammenspiel einzelner, voneinander unabhängiger Dienste auf Basis deskriptiver Workflow-Beschreibungen modelliert wird. Dadurch ergibt sich eine hohe Laufzeitdynamik der gesamten Architektur. Für das SLM ist insbesondere die dezentrale Struktur einer SOA mit unterschiedlichen administrativen Zuständigkeiten für einzelne Teilsysteme problematisch, da regelnde Eingriffe zum einen durch die Kapselung der Implementierung einzelner Dienste und zum anderen durch das Fehlen einer zentralen Kontrollinstanz nur sehr eingeschränkt möglich sind. Die vorliegende Arbeit definiert die Architektur eines SLM-Systems für SOA-Umgebungen, in dem autonome Management-Komponenten kooperieren, um übergeordnete Dienstgüteziele zu erfüllen: Mithilfe von Selbst-Management-Technologien wird zunächst eine Automatisierung des Dienstgüte-Managements auf Ebene einzelner Dienste erreicht. Die autonomen Management-Komponenten dieser Dienste können dann mithilfe von Selbstorganisationsmechanismen übergreifende Ziele zur Optimierung von Dienstgüteverhalten und Ressourcennutzung verfolgen. Für das SLM auf Ebene von SOA Workflows müssen temporär dienstübergreifende Kooperationen zur Erfüllung von Dienstgüteanforderungen etabliert werden, die sich damit auch über mehrere administrative Domänen erstrecken können. Eine solche zeitlich begrenzte Kooperation autonomer Teilsysteme kann sinnvoll nur dezentral erfolgen, da die jeweiligen Kooperationspartner im Vorfeld nicht bekannt sind und – je nach Lebensdauer einzelner Workflows – zur Laufzeit beteiligte Komponenten ausgetauscht werden können. In der Arbeit wird ein Verfahren zur Koordination autonomer Management-Komponenten mit dem Ziel der Optimierung von Antwortzeiten auf Workflow-Ebene entwickelt: Management-Komponenten können durch Übertragung von Antwortzeitanteilen untereinander ihre individuellen Ziele straffen oder lockern, ohne dass das Gesamtantwortzeitziel dadurch verändert wird. Die Übertragung von Antwortzeitanteilen wird mithilfe eines Auktionsverfahrens realisiert. Technische Grundlage der Kooperation bildet ein Gruppenkommunikationsmechanismus. Weiterhin werden in Bezug auf die Nutzung geteilter, virtualisierter Ressourcen konkurrierende Dienste entsprechend geschäftlicher Ziele priorisiert. Im Rahmen der praktischen Umsetzung wird die Realisierung zentraler Architekturelemente und der entwickelten Verfahren zur Selbstorganisation beispielhaft für das SLM konkreter Komponenten vorgestellt. Zur Untersuchung der Management-Kooperation in größeren Szenarien wird ein hybrider Simulationsansatz verwendet. Im Rahmen der Evaluation werden Untersuchungen zur Skalierbarkeit des Ansatzes durchgeführt. Schwerpunkt ist hierbei die Betrachtung eines Systems aus kooperierenden Management-Komponenten, insbesondere im Hinblick auf den Kommunikationsaufwand. Die Evaluation zeigt, dass ein dienstübergreifendes, autonomes Performance-Management in SOA-Umgebungen möglich ist. Die Ergebnisse legen nahe, dass der entwickelte Ansatz auch in großen Umgebungen erfolgreich angewendet werden kann.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Vorgestellt wird eine weltweit neue Methode, Schnittstellen zwischen Menschen und Maschinen für individuelle Bediener anzupassen. Durch Anwenden von Abstraktionen evolutionärer Mechanismen wie Selektion, Rekombination und Mutation in der EOGUI-Methodik (Evolutionary Optimization of Graphical User Interfaces) kann eine rechnergestützte Umsetzung der Methode für Graphische Bedienoberflächen, insbesondere für industrielle Prozesse, bereitgestellt werden. In die Evolutionäre Optimierung fließen sowohl die objektiven, d.h. messbaren Größen wie Auswahlhäufigkeiten und -zeiten, mit ein, als auch das anhand von Online-Fragebögen erfasste subjektive Empfinden der Bediener. Auf diese Weise wird die Visualisierung von Systemen den Bedürfnissen und Präferenzen einzelner Bedienern angepasst. Im Rahmen dieser Arbeit kann der Bediener aus vier Bedienoberflächen unterschiedlicher Abstraktionsgrade für den Beispielprozess MIPS ( MIschungsProzess-Simulation) die Objekte auswählen, die ihn bei der Prozessführung am besten unterstützen. Über den EOGUI-Algorithmus werden diese Objekte ausgewählt, ggf. verändert und in einer neuen, dem Bediener angepassten graphischen Bedienoberfläche zusammengefasst. Unter Verwendung des MIPS-Prozesses wurden Experimente mit der EOGUI-Methodik durchgeführt, um die Anwendbarkeit, Akzeptanz und Wirksamkeit der Methode für die Führung industrieller Prozesse zu überprüfen. Anhand der Untersuchungen kann zu großen Teilen gezeigt werden, dass die entwickelte Methodik zur Evolutionären Optimierung von Mensch-Maschine-Schnittstellen industrielle Prozessvisualisierungen tatsächlich an den einzelnen Bediener anpaßt und die Prozessführung verbessert.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In dieser Arbeit werden mithilfe der Likelihood-Tiefen, eingeführt von Mizera und Müller (2004), (ausreißer-)robuste Schätzfunktionen und Tests für den unbekannten Parameter einer stetigen Dichtefunktion entwickelt. Die entwickelten Verfahren werden dann auf drei verschiedene Verteilungen angewandt. Für eindimensionale Parameter wird die Likelihood-Tiefe eines Parameters im Datensatz als das Minimum aus dem Anteil der Daten, für die die Ableitung der Loglikelihood-Funktion nach dem Parameter nicht negativ ist, und dem Anteil der Daten, für die diese Ableitung nicht positiv ist, berechnet. Damit hat der Parameter die größte Tiefe, für den beide Anzahlen gleich groß sind. Dieser wird zunächst als Schätzer gewählt, da die Likelihood-Tiefe ein Maß dafür sein soll, wie gut ein Parameter zum Datensatz passt. Asymptotisch hat der Parameter die größte Tiefe, für den die Wahrscheinlichkeit, dass für eine Beobachtung die Ableitung der Loglikelihood-Funktion nach dem Parameter nicht negativ ist, gleich einhalb ist. Wenn dies für den zu Grunde liegenden Parameter nicht der Fall ist, ist der Schätzer basierend auf der Likelihood-Tiefe verfälscht. In dieser Arbeit wird gezeigt, wie diese Verfälschung korrigiert werden kann sodass die korrigierten Schätzer konsistente Schätzungen bilden. Zur Entwicklung von Tests für den Parameter, wird die von Müller (2005) entwickelte Simplex Likelihood-Tiefe, die eine U-Statistik ist, benutzt. Es zeigt sich, dass für dieselben Verteilungen, für die die Likelihood-Tiefe verfälschte Schätzer liefert, die Simplex Likelihood-Tiefe eine unverfälschte U-Statistik ist. Damit ist insbesondere die asymptotische Verteilung bekannt und es lassen sich Tests für verschiedene Hypothesen formulieren. Die Verschiebung in der Tiefe führt aber für einige Hypothesen zu einer schlechten Güte des zugehörigen Tests. Es werden daher korrigierte Tests eingeführt und Voraussetzungen angegeben, unter denen diese dann konsistent sind. Die Arbeit besteht aus zwei Teilen. Im ersten Teil der Arbeit wird die allgemeine Theorie über die Schätzfunktionen und Tests dargestellt und zudem deren jeweiligen Konsistenz gezeigt. Im zweiten Teil wird die Theorie auf drei verschiedene Verteilungen angewandt: Die Weibull-Verteilung, die Gauß- und die Gumbel-Copula. Damit wird gezeigt, wie die Verfahren des ersten Teils genutzt werden können, um (robuste) konsistente Schätzfunktionen und Tests für den unbekannten Parameter der Verteilung herzuleiten. Insgesamt zeigt sich, dass für die drei Verteilungen mithilfe der Likelihood-Tiefen robuste Schätzfunktionen und Tests gefunden werden können. In unverfälschten Daten sind vorhandene Standardmethoden zum Teil überlegen, jedoch zeigt sich der Vorteil der neuen Methoden in kontaminierten Daten und Daten mit Ausreißern.