3 resultados para Polynomial time hierarchy

em Universitätsbibliothek Kassel, Universität Kassel, Germany


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Analysis by reduction is a method used in linguistics for checking the correctness of sentences of natural languages. This method is modelled by restarting automata. All types of restarting automata considered in the literature up to now accept at least the deterministic context-free languages. Here we introduce and study a new type of restarting automaton, the so-called t-RL-automaton, which is an RL-automaton that is rather restricted in that it has a window of size one only, and that it works under a minimal acceptance condition. On the other hand, it is allowed to perform up to t rewrite (that is, delete) steps per cycle. Here we study the gap-complexity of these automata. The membership problem for a language that is accepted by a t-RL-automaton with a bounded number of gaps can be solved in polynomial time. On the other hand, t-RL-automata with an unbounded number of gaps accept NP-complete languages.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper contributes to the study of Freely Rewriting Restarting Automata (FRR-automata) and Parallel Communicating Grammar Systems (PCGS), which both are useful models in computational linguistics. For PCGSs we study two complexity measures called 'generation complexity' and 'distribution complexity', and we prove that a PCGS Pi, for which the generation complexity and the distribution complexity are both bounded by constants, can be transformed into a freely rewriting restarting automaton of a very restricted form. From this characterization it follows that the language L(Pi) generated by Pi is semi-linear, that its characteristic analysis is of polynomial size, and that this analysis can be computed in polynomial time.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In der algebraischen Kryptoanalyse werden moderne Kryptosysteme als polynomielle, nichtlineare Gleichungssysteme dargestellt. Das Lösen solcher Gleichungssysteme ist NP-hart. Es gibt also keinen Algorithmus, der in polynomieller Zeit ein beliebiges nichtlineares Gleichungssystem löst. Dennoch kann man aus modernen Kryptosystemen Gleichungssysteme mit viel Struktur generieren. So sind diese Gleichungssysteme bei geeigneter Modellierung quadratisch und dünn besetzt, damit nicht beliebig. Dafür gibt es spezielle Algorithmen, die eine Lösung solcher Gleichungssysteme finden. Ein Beispiel dafür ist der ElimLin-Algorithmus, der mit Hilfe von linearen Gleichungen das Gleichungssystem iterativ vereinfacht. In der Dissertation wird auf Basis dieses Algorithmus ein neuer Solver für quadratische, dünn besetzte Gleichungssysteme vorgestellt und damit zwei symmetrische Kryptosysteme angegriffen. Dabei sind die Techniken zur Modellierung der Chiffren von entscheidender Bedeutung, so das neue Techniken entwickelt werden, um Kryptosysteme darzustellen. Die Idee für das Modell kommt von Cube-Angriffen. Diese Angriffe sind besonders wirksam gegen Stromchiffren. In der Arbeit werden unterschiedliche Varianten klassifiziert und mögliche Erweiterungen vorgestellt. Das entstandene Modell hingegen, lässt sich auch erfolgreich auf Blockchiffren und auch auf andere Szenarien erweitern. Bei diesen Änderungen muss das Modell nur geringfügig geändert werden.