15 resultados para Plant-soil interaction
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
A better understanding of effects after digestate application on plant community, soil microbial community as well as nutrient and carbon dynamics is crucial for a sustainable grassland management and the prevention of species and functional diversity loss. The specific research objectives of the thesis were: (i) to investigate effects after digestate application on grass species and soil microbial community, especially focussing on nitrogen dynamic in the plant-soil system and to examine the suitability of the digestate from the “integrated generation of solid fuel and biogas from biomass” (IFBB) system as fertilizer (Chapter 3). (ii) to investigate the relationship between plant community and functionality of soil microbial community of extensively managed meadows, taking into account temporal variations during the vegetation period and abiotic soil conditions (Chapter 4). (iii) to investigate the suitability of IFBB-concept implementation as grassland conservation measure for meadows and possible associated effects of IFBB digestate application on plant and soil microbial community as well as soil microbial substrate utilization and catabolic evenness (Chapter 5). Taken together the results indicate that the digestate generated during the IFBB process stands out from digestates of conventional whole crop digestion on the basis of higher nitrogen use efficiency and that it is useful for increasing harvestable biomass and the nitrogen content of the biomass, especially of L. perenne, which is a common species of intensively used grasslands. Further, a medium application rate of IFBB digestate (50% of nitrogen removed with harvested biomass, corresponding to 30 50 kg N ha-1 a-1) may be a possibility for conservation management of different meadows without changing the functional above- and belowground characteristic of the grasslands, thereby offering an ecologically worthwhile alternative to mulching. Overall, the soil microbial biomass and catabolic performance under planted soil was marginally affected by digestate application but rather by soil properties and partly by grassland species and legume occurrence. The investigated extensively managed meadows revealed a high soil catabolic evenness, which was resilient to medium IFBB application rate after a three-year period of application.
Resumo:
This study was conducted to investigate soil biological and chemical factors that give rise to cereal yield enhancing effects of legume rotations on sandy, nutrient poor West African soils. The aim was not only to gain more information on the role of legume residues and microorganisms in the soil nutrient cycle. But the study aimed at evaluating if differences in substrate qualities (e.g. root residues) cause changes in the microbial community structure due to specific and highly complex microbe-root-soil interactions. Site and system specific reactions of microorganisms towards rewetting, simulating the onset of rainy season, were observed. Higher respiration rates, higher amounts of microbial biomass carbon (Cmic) and nitrogen (Nmic) as well as higher ergosterol, muramic acid, glucosamine and adenylate concentrations were measured in CL soils of Koukombo and in both soils from Fada. The immediate increase in ATP concentrations after rewetting was likely caused by rehydration of microbial cells where N was not immobilized and, thus, available for plants facilitating their rapid development. Legume root residues led only to slightly better plant performances compared to the control, while the application of cereal roots reduced seedling growth. In contrast to sorghum seedlings, the microbial community did not react to the mineral treatment. Thus the energy supply in form of organic amendments increased microbial indices compared to mineral P application and the control. The results of basal respiration rates, Cmic and Corg levels indicate that the microbial community in the soil from Koukombo is less efficient in substrate use compared to microorganisms in the soil from Fada. However, the continuous carbon input by legume root residues might have contributed to these differences in soil fertility. With the 33P isotopic exchange method a low buffering capacity was detected in both soils irrespective of treatments. Calculated E values (E1min to E1min-1d and E1d-3m) indicated a slowly release of P due to root turnover while applied mineral P is taken up by plants or fixed to the soil. Due to the fact that sorghum growth reacted mainly to the application of mineral P and the microorganisms solely to the organic inputs, the combination of both amendments seems to be the best approach to a sustainable increase of crop production on many nutrient-poor, sandy West African soils. In a pot experiment, were CC and CL soils from Fada and Koukombo were adjusted to the same level of P and N concentrations, crop growth was significantly higher on CL soils, compared to the respective treatments on CC soils. Mycorrhizal infection of roots was increased and the number of nematodes, predominantly free living nematodes, was almost halfed on rotation soils. In conclusion, increased nutrient availability (especially P and N) through the introduction of legumes is not the only reason for the observed yield increasing effects. Soil biological factors seem to also play an important role. In a root chamber experiment the pH gradient along the root-soil-interface was measured at three times using an antimony microelectrode. For Fada soils, pH values were higher on CL than CC soils while the opposite was true for the Koukombo soils. Site-specific differences between Fada and Koukombo soils in N content and microbial community structures might have created varying crop performances leading to the contrasting pH findings. However, the mechanisms involved in this highly complex microbe-root-soil interaction remain unclear.
Resumo:
Bakterien existieren bevorzugt in Biofilmen. Das Zusammenleben in diesen Gemeinschaften bietet den einzelnen Mikroben einen wirksamen Schutz und ermöglicht die Ausbildung langfristiger, synergistischer Wechselwirkungen, die mit multizellulären Systemen verglichen werden können. Biofilme bestehen aus Mikrooganismen-Populationen, die sich an Grenzflächen ansammeln und typischerweise von einer Matrix aus extrazellulären polymeren Substanzen umgeben sind. Auch auf Pflanzen-Oberflächen bilden viele Bakterien Biofilme, um ihre Überlebenswahrscheinlichkeit zu erhöhen. In dieser Arbeit wurde die Biofilmbildung bei Pflanzen-assoziierten Bakterien der Gattung Methylobacterium (Mtb.) untersucht, wobei molekular- und mikrobiologische sowie mikroskopische Techniken eingesetzt wurden. Es zeigte sich, dass alle untersuchten Vertreter der Gattung Methylobacterium in unterschiedlichem Ausmaß Biofilme bilden. Die Ausprägung ist dabei Taxon (bzw. Isolat)-spezifisch und vor allem von der Stickstoff-Verfügbarkeit abhängig. Jedoch spielen auch andere Umweltfaktoren, wie die Versorgung der Zellen mit Phosphat und die Zelldichte, bei der Ausbildung der überzellulären Einheiten eine wichtige Rolle. Die Matrix der Biofilme wird meist durch ein fibrilläres Netzwerk gebildet. Dabei handelt es sich um Heteropolysaccharide, die von den Bakterien synthetisiert und sezerniert werden. Einige Isolate bilden zusätzlich zahlreiche Fimbrien (Auswüchse), durch die sie an andere Zellen oder Oberflächen binden können. Im zweiten Teil dieser Arbeit wurden mehrere neue Methylobacterium-Isolate physiologisch und molekulargenetisch charakterisiert (Nährstoffverwertung, DNA-Sequenzen verschiedener Gene, phylogenetische Analysen usw.). Im Vordergrund stand hierbei der von einer urtümlichen Landpflanze, dem Lebermoos (Marchantia polymorpha), isolierte Stamm Mtb. sp. JT1. Dabei zeigten sich deutliche Unterschiede in der Morphologie und Physiologie des Bakterienstamms JT1 und dem nahe verwandten Stamm 5b.2.20 zu den bereits beschriebenen Taxa der Gattung, so dass eine Spezies-Neubeschreibung erforderlich war. Als Artname wurde aufgrund der außergewöhnlichen Oberflächenstrukturen Mtb. fimbriae sp. nov. eingeführt. Auch andere Methylobakterien (unter anderem Isolat Mtb. sp. F3.2, isoliert vom Laubmoos Funaria hygrometrica) stellen wahrscheinlich Vertreter einer neue Spezies dar (Artname Mtb. funariae sp. nov.). Jedoch zeigen Mtb. fimbriae und Mtb. funariae nur geringe physiologische und morphologische Unterschiede und konnten auf Grundlage umfassender DNA-DNA-Hybridisierungs-Studien nicht eindeutig voneinander abgegrenzt werden.
Resumo:
Das Ziel dieser Arbeit war, die Einflüsse von Wurzeln und Rhizodeposition auf den Umsatz von Körnerleguminosenresiduen und damit verknüpfte mikrobielle Prozesse zu untersuchen. In einem integrierten Versuch wurden Ackerbohne (Vicia faba L.), Erbse (Pisum sativum L.) und Weiße Lupine (Lupinus albus L.) untersucht. Der Versuch bestand aus drei Teilen, zwei Gefäß-Experimenten und einem Inkubationsexperiment, in denen ausgehend von einem Gefäß-Experiment derselbe Boden und dasselbe Pflanzenmaterial verwendet wurden. In Experiment I wurde die Stickstoff-Rhizodeposition der Körnerleguminosenarten, definiert als wurzelbürtiger N nach dem Entfernen aller sichtbaren Wurzeln im Boden, gemessen und der Verbleib des Rhizodepositions-N in verschiednenen Bodenpools untersucht. Dazu wurden die Leguminosen in einem Gefäßversuch unter Verwendung einer in situ 15N-Docht-Methode mit einer 15N Harnstofflösung pulsmarkiert. In Experiment II wurde der Umsatz der N-Rhizodeposition der Körnerleguminosen und der Einfluss der Rhizodeposition auf den anschließenden C- und N-Umsatz der Körnerleguminosenresiduen in einem Inkubationsexperiment untersucht. In Experiment III wurde der N-Transfer aus den Körnerleguminosenresiduen einschließlich N-Rhizodeposition in die mikrobielle Biomasse und die Folgefrüchte Weizen (Triticum aestivum L.) und Raps (Brassica napus L.) in einem Gewächshaus-Gefäßversuch ermittelt. Die in situ 15N Docht-Markierungs-Methode wies hohe 15N Wiederfindungsraten von ungefähr 84 Prozent für alle drei Leguminosenarten auf und zeigte eine vergleichsweise homogene 15N Verteilung zwischen verschiedenen Pflanzenteilen zur Reife. Die Wurzeln zeigten deutliche Effekte auf die N-Dynamik nach dem Anbau von Körnerleguminosen. Die Effekte konnten auf die N-Rhizodeposition und deren anschließenden Umsatz, Einflüsse der Rhizodeposition von Körnerleguminosen auf den anschließenden Umsatz ihrer Residuen (Stängel, Blätter, erfassbare Wurzeln) und die Wirkungen nachfolgender Nichtleguminosen auf den Umsatzprozess der Residuen zurückgeführt werden: Die N-Rhizodeposition betrug zur Reife der Pflanzen bezogen auf die Gesamt-N- Aufnahme 13 Prozent bei Ackerbohne und Erbse und 16 Prozent bei Weißer Lupine. Bezogen auf den Residual N nach Ernte der Körner erhöhte sich der relative Anteil auf 35 - 44 Prozent. Die N-Rhizodeposition ist daher ein wesentlicher Pool für die N-Bilanz von Körnerleguminosen und trägt wesentlich zur Erklärung positiver Fruchtfolgeeffekte nach Körnerleguminosen bei. 7 - 21 Prozent des Rhizodepositions-N wurden als Feinwurzeln nach Nasssiebung (200 µm) wiedergefunden. Nur 14 - 18 Prozent des Rhizodepositions-N wurde in der mikrobiellen Biomasse und ein sehr kleiner Anteil von 3 - 7 Prozent in der mineralischen N Fraktion gefunden. 48 bis 72 Prozent der N-Rhizodeposition konnte in keinem der untersuchten Pools nachgewiesen werden. Dieser Teil dürfte als mikrobielle Residualmasse immobilisiert worden sein. Nach 168 Tagen Inkubation wurden 21 bis 27 Prozent des Rhizodepositions-N in den mineralisiert. Der mineralisierte N stammte im wesentlichen aus zwei Pools: Zwischen 30 Prozent und 55 Prozent wurde aus der mikrobiellen Residualmasse mineralisiert und eine kleinere Menge stammte aus der mikrobielle Biomasse. Der Einfluss der Rhizodeposition auf den Umsatz der Residuen war indifferent. Durch Rhizodeposition wurde die C Mineralisierung der Leguminosenresiduen nur in der Lupinenvariante erhöht, wobei der mikrobielle N und die Bildung von mikrobieller Residualmasse aus den Leguminosenresiduen in allen Varianten durch Rhizodepositionseinflüsse erhöht waren. Das Potential des residualen Körnerleguminosen-N für die N Ernährung von Folgefrüchten war gering. Nur 8 - 12 Prozent des residualen N wurden in den Folgenfrüchten Weizen und Raps wiedergefunden. Durch die Berücksichtigung des Rhizodepositions-N war der relative Anteil des Residual-N bezogen auf die Gesamt-N-Aufnahme der Folgefrucht hoch und betrug zwischen 18 und 46 Prozent. Dies lässt auf einen höheren N-Beitrag der Körnerleguminosen schließen als bisher angenommen wurde. Die residuale N-Aufnahme von Weizen von der Blüte bis zur Reife wurde durch den Residual-N gespeist, der zur Blüte in der mikrobiellen Biomasse immobilisiert worden war. Die gesamte Poolgröße, Residual-N in der mikrobiellen Biomasse und in Weizen, veränderte sich von der Blüte bis zur Reife nicht. Jedoch konnte ein Rest von 80 Prozent des Residual-N in keinem der untersuchten Pools nachgewiesen werden und dürfte als mikrobielle Residualmasse immobilisiert worden sein oder ist noch nicht abgebaut worden. Die zwei unterschiedlichen Folgefrüchte - Weizen und Raps - zeigten sehr ähnliche Muster bei der N-Aufnahme, der Residual-N Wiederfindung und bei mikrobiellen Parametern für die Residuen der drei Körnerleguminosenarten. Ein differenzierender Effekt auf den Umsatz der Residuen bzw. auf das Residual-N-Aneignungsvermögen der Folgefrüchte konnte nicht beobachtet werden.
Resumo:
A field experiment with millet (Pennisetum glaucum L.), sorghum [Sorghum bicolor (L.) Moench], cowpea (Vigna unguiculata L.) and groundnut (Arachnis hypogeae L.) was conducted on severely P-deficient acid sandy soils of Niger, Mali and Burkina Faso to measure changes in pH and nutrient availability as affected by distance from the root surface and by mineral fertiliser application. Treatments included three rates of phosphorus (P) and four levels of nitrogen (N) application. Bulk, rhizosphere and rhizoplane soils were sampled at 35, 45 and 75 DAS in 1997 and at 55 and 65 DAS in 1998. Regardless of the cropping system and level of mineral fertiliser applied, soil pH consistently increased between 0.7 and two units from the bulk soil to the rhizoplane of millet. Similar pH gradients were observed in cowpea, but pH changes were much smaller in sorghum with a difference of only 0.3 units. Shifts in pH led to large increases in nutrient availability close to the roots. Compared with the bulk soil, available P in the rhizoplane was between 190 and 270% higher for P-Bray and between 360 and 600% higher for P-water. Exchangeable calcium (Ca) and magnesium (Mg) levels were also higher in the millet rhizoplane than in the bulk soil, whereas exchangeable aluminium (Al) levels decreased with increasing pH close to the root surface. The results suggest an important role of root-induced pH increases for crops to cope with acidity-induced nutrient deficiency and Al stress of soils in the Sudano-Sahelian zone of West Africa.
Resumo:
Soil organic matter (SOM) vitally impacts all soil functions and plays a key role in the global carbon (C) cycle. More than 70% of the terrestric C stocks that participate in the active C cycle are stored in the soil. Therefore, quantitative knowledge of the rates of C incorporation into SOM fractions of different residence time is crucial to understand and predict the sequestration and stabilization of soil organic carbon (SOC). Consequently, there is a need of fractionation procedures that are capable of isolating functionally SOM fractions, i.e. fractions that are defined by their stability. The literature generally refers to three main mechanisms of SOM stabilization: protection of SOM from decomposition by (i) its structural composition, i.e. recalcitrance, (ii) spatial inaccessibility and/or (iii) interaction with soil minerals and metal ions. One of the difficulties in developing fractionation procedures for the isolation of functional SOM fractions is the marked heterogeneity of the soil environment with its various stabilization mechanisms – often several mechanisms operating simultaneously – in soils and soil horizons of different texture and mineralogy. The overall objective of the present thesis was to evaluate present fractionation techniques and to get a better understanding of the factors of SOM sequestration and stabilization. The first part of this study is attended to the structural composition of SOM. Using 13C cross-polarization magic-angle spinning (CPMAS) nuclear magnetic resonance (NMR) spectroscopy, (i) the effect of land use on SOM composition was investigated and (ii) examined whether SOM composition contributes to the different stability of SOM in density and aggregate fractions. The second part of the present work deals with the mineral-associated SOM fraction. The aim was (iii) to evaluate the suitability of chemical fractionation procedures used in the literature for the isolation of stable SOM pools (stepwise hydrolysis, treatments using oxidizing agents like Na2S2O8, H2O2, and NaOCl as well as demineralization of the residue obtained by the NaOCl treatment using HF (NaOCl+HF)) by pool sizes, 13C and 14C data. Further, (iv) the isolated SOM fractions were compared to the inert organic matter (IOM) pool obtained for the investigated soils using the Rothamsted Carbon Model and isotope data in order to see whether the tested chemical fractionation methods produce SOM fractions capable to represent this pool. Besides chemical fractionation, (v) the suitability of thermal oxidation at different temperatures for obtaining stable SOC pools was evaluated. Finally, (vi) the short-term aggregate dynamics and the factors that impact macroaggregate formation and C stabilization were investigated by means of an incubation study using treatments with and without application of 15N labeled maize straw of different degradability (leaves and coarse roots). All treatments were conducted with and without the addition of fungicide. Two study sites with different soil properties and land managements were chosen for these investigations. The first one, located at Rotthalmünster, is a Stagnic Luvisol (silty loam) under different land use regimes. The Ah horizons of a spruce forest and continuous grassland and the Ap and E horizons of two plots with arable crops (continuous maize and wheat cropping) were examined. The soil of the second study site, located at Halle, is a Haplic Phaeozem (loamy sand) where the Ap horizons of two plots with arable crops (continuous maize and rye cropping) were investigated. Both study sites had a C3-/C4-vegetational change on the maize plot for the purpose of tracing the incorporation of the younger, maize-derived C into different SOM fractions and the calculation of apparent C turnover times of these. The Halle site is located near a train station and industrial areas, which caused a contamination with high amounts of fossil C. The investigation of aggregate and density fractions by 13C CPMAS NMR spectroscopy revealed that density fractionation isolated SOM fractions of different composition. The consumption of a considerable part (10–20%) of the easily available O-alkyl-C and the selective preservation of the more recalcitrant alkyl-C when passing from litter to the different particulate organic matter (POM) fractions suggest that density fractionation was able to isolate SOM fractions with different degrees of decomposition. The spectra of the aggregate fractions resembled those of the mineral-associated SOM fraction obtained by density fractionation and no considerable differences were observed between aggregate size classes. Comparison of plant litter, density and aggregate size fractions from soil under different land use showed that the type of land use markedly influenced the composition of SOM. While SOM of the acid forest soil was characterized by a large content (> 50%) of POM, which contained high amounts of spruce-litter derived alkyl-C, the organic matter in the biologically more active grassland and arable soils was dominated by mineral-associated SOM (> 95%). This SOM fraction comprised greater proportions of aryl- and carbonyl-C and is considered to contain a higher amount of microbially-derived organic substances. Land use can alter both, structure and stability of SOM fractions. All applied chemical treatments induced considerable SOC losses (> 70–95% of mineral-associated SOM) in the investigated soils. The proportion of residual C after chemical fractionation was largest in the arable Ap and E horizons and increased with decreasing C content in the initial SOC after stepwise hydrolysis as well as after the oxidative treatments with H2O2 and Na2S2O8. This can be expected for a functional stable pool of SOM, because it is assumed that the more easily available part of SOC is consumed first if C inputs decrease. All chemical treatments led to a preferential loss of the younger, maize-derived SOC, but this was most pronounced after the treatments with Na2S2O8 and H2O2. After all chemical fractionations, the mean 14C ages of SOC were higher than in the mineral-associated SOM fraction for both study sites and increased in the order: NaOCl < NaOCl+HF ≤ stepwise hydrolysis << H2O2 ≈ Na2S2O8. The results suggest that all treatments were capable of isolating a more stable SOM fraction, but the treatments with H2O2 and Na2S2O8 were the most efficient ones. However, none of the chemical fractionation methods was able to fit the IOM pool calculated using the Rothamsted Carbon Model and isotope data. In the evaluation of thermal oxidation for obtaining stable C fractions, SOC losses increased with temperature from 24–48% (200°C) to 100% (500°C). In the Halle maize Ap horizon, losses of the young, maize-derived C were considerably higher than losses of the older C3-derived C, leading to an increase in the apparent C turnover time from 220 years in mineral-associated SOC to 1158 years after thermal oxidation at 300°C. Most likely, the preferential loss of maize-derived C in the Halle soil was caused by the presence of the high amounts of fossil C mentioned above, which make up a relatively large thermally stable C3-C pool in this soil. This agrees with lower overall SOC losses for the Halle Ap horizon compared to the Rotthalmünster Ap horizon. In the Rotthalmünster soil only slightly more maize-derived than C3-derived SOC was removed by thermal oxidation. Apparent C turnover times increased slightly from 58 years in mineral-associated SOC to 77 years after thermal oxidation at 300°C in the Rotthalmünster Ap and from 151 to 247 years in the Rotthalmünster E horizon. This led to the conclusion that thermal oxidation of SOM was not capable of isolating SOM fractions of considerably higher stability. The incubation experiment showed that macroaggregates develop rapidly after the addition of easily available plant residues. Within the first four weeks of incubation, the maximum aggregation was reached in all treatments without addition of fungicide. The formation of water-stable macroaggregates was related to the size of the microbial biomass pool and its activity. Furthermore, fungi were found to be crucial for the development of soil macroaggregates as the formation of water-stable macroaggregates was significantly delayed in the fungicide treated soils. The C concentration in the obtained aggregate fractions decreased with decreasing aggregate size class, which is in line with the aggregate hierarchy postulated by several authors for soils with SOM as the major binding agent. Macroaggregation involved incorporation of large amounts maize-derived organic matter, but macroaggregates did not play the most important role in the stabilization of maize-derived SOM, because of their relatively low amount (less than 10% of the soil mass). Furthermore, the maize-derived organic matter was quickly incorporated into all aggregate size classes. The microaggregate fraction stored the largest quantities of maize-derived C and N – up to 70% of the residual maize-C and -N were stored in this fraction.
Resumo:
Little is known about plant biodiversity, irrigation management and nutrient fluxes as criteria to assess the sustainability of traditional irrigation agriculture in eastern Arabia. Therefore interdisciplinary studies were conducted over 4 yrs on flood-irrigated fields dominated by wheat (Triticum spp.), alfalfa (Medicago sativa L.) and date palm (Phoenix dactylifera L.) in two mountain oases of northern Oman. In both oases wheat landraces consisted of varietal mixtures comprising T. aestivum and T. durum of which at least two botanical varieties were new to science. During irrigation cycles of 6-9 days on an alfalfa-planted soil, volumetric water contents ranged from 30-13%. For cropland, partial oasis balances (comprising inputs of manure, mineral fertilizers, N2-fixation and irrigation water, and outputs of harvested products) were similar for both oases, with per hectare annual surpluses of 131 kg N, 37 kg P and 84 kg K at Balad Seet and of 136 kg N, 16 kg P and 66 kg K at Maqta. Respective palm grove surpluses, in contrast were with 303 kg N, 38 kg P, and 173 kg K ha^-1 yr^-1 much higher at Balad Seet than with 84 kg N, 14 kg P and 91 kg K ha^-1 yr^-1 at Maqta. The results show that the sustainability of these irrigated landuse systems depends on a high quality of the irrigation water with low Na but high CaCO3, intensive recycling of manure and an elaborate terrace structure with a well tailored water management system that allows adequate drainage.
Resumo:
Summary: Productivity, botanical composition and forage quality of legume-grass swards are important factors for successful arable farming in both organic and conventional farming systems. As these attributes can vary considerably within a field, a non-destructive method of detection while doing other tasks would facilitate a more targeted management of crops, forage and nutrients in the soil-plant-animal system. This study was undertaken to explore the potential of field spectral measurements for a non destructive prediction of dry matter (DM) yield, legume proportion in the sward, metabolizable energy (ME), ash content, crude protein (CP) and acid detergent fiber (ADF) of legume-grass mixtures. Two experiments were conducted in a greenhouse under controlled conditions which allowed collecting spectral measurements which were free from interferences such as wind, passing clouds and changing angles of solar irradiation. In a second step this initial investigation was evaluated in the field by a two year experiment with the same legume-grass swards. Several techniques for analysis of the hyperspectral data set were examined in this study: four vegetation indices (VIs): simple ratio (SR), normalized difference vegetation index (NDVI), enhanced vegetation index (EVI) and red edge position (REP), two-waveband reflectance ratios, modified partial least squares (MPLS) regression and stepwise multiple linear regression (SMLR). The results showed the potential of field spectroscopy and proved its usefulness for the prediction of DM yield, ash content and CP across a wide range of legume proportion and growth stage. In all investigations prediction accuracy of DM yield, ash content and CP could be improved by legume-specific calibrations which included mixtures and pure swards of perennial ryegrass and of the respective legume species. The comparison between the greenhouse and the field experiments showed that the interaction between spectral reflectance and weather conditions as well as incidence angle of light interfered with an accurate determination of DM yield. Further research is hence needed to improve the validity of spectral measurements in the field. Furthermore, the developed models should be tested on varying sites and vegetation periods to enhance the robustness and portability of the models to other environmental conditions.
Resumo:
It is well known that the parasitic weed Striga asiatica (L.) Kuntze can be suppressed by Striga-tolerant sorghum (Sorghum bicolor L. Moench) cultivars, Desmodium intortum (Mill.) Urb. (greanleaf desmodium), and by fertilization with nitrogen. The study objective was the assessment of Striga control provided by integration of Desmodium density, timing of sorghum-Desmodium intercrop establishment, and nitrogen fertilization. Growth responses and yield of three sorghum cultivars were measured in three pot experiments. A soil naturally infested with Striga was used, and that part of the soil which served as uninfested control was chemically sterilised. Striga numbers and growth were affected significantly by sorghum cultivars, sorghum-Desmodium intercrop ratios, timing of the sorghum-Desmodium association, as well as by their interactions. Desmodium caused 100% suppression of Striga emergence when Desmodium was established in the 1:3 sorghum-Desmodium ratio at seeding of sorghum. Total control of Striga was also achieved with the 1:1 sorghum-Desmodium ratio when Desmodium was transplanted 30 days before sorghum seeding. However, these two treatments also caused significant reductions in sorghum yield. In contrast, 100% Striga control and a dramatic increase in sorghum yield were achieved with 100 kg N ha^{-1} in the 1:1 sorghum-Desmodium intercrop. Compatibility of sorghum and Desmodium was evident at the 1:1 sorghum-Desmodium intercrop established at sorghum seeding. Overall, the Ethiopian cultivars Meko and Abshir showed better agronomic performance and higher tolerance to Striga than the South African cultivar PAN 8564. It is recommended that the N × Desmodium × sorghum interaction be investigated under field conditions.
Resumo:
Little is known about the traditional coffee cultivation systems in Central Aceh, Indonesia, where coffee production is a major source of income for local Gayo people. Based on field observations and farmer interviews, 14 representative agroforestry coffee plantations of different age classes (60-70 years, 30-40 years, and 20 years) as well as seven adjacent grassland and native forest sites were selected for this study, and soil and coffee leaf samples collected for nutrient analysis. Significant differences in soil and coffee leaf parameters were found between former native forest and Sumatran pine (Pinus merkusii) forest as previous land cover indicating the importance of the land use history for today’s coffee cultivation. Soil pH as well as exchangeable Na and Ca concentrations were significantly lower on coffee plantations compared to grassland and forest sites. Soil C, N, plant available P, exchangeable K, and Mg concentrations showed no consistent differences between land use groups. Nitrogen (N), phosphorus (P), and potassium (K) concentrations of coffee leaves were in the sufficiency range, whereas zinc (Zn) contents were found to be consistently below the sufficiency threshold and significantly lower in coffee plantations of previous pine forest cover compared to those of previous native forest cover. While the results of this study provided insights into the nutrient status of coffee plantations in Central Aceh, the heterogeneity of site conditions, limited sampling size, and scarcity of reliable data about the land use history and initial soil conditions of sampled sites preclude more definitive conclusions about the sustainability of the studied systems.
Resumo:
Extensive grassland biomass for bioenergy production has long been subject of scientific research. The possibility of combining nature conservation goals with a profitable management while reducing competition with food production has created a strong interest in this topic. However, the botanical composition will play a key role for solid fuel quality of grassland biomass and will have effects on the combustion process by potentially causing corrosion, emission and slagging. On the other hand, botanical composition will affect anaerobic digestibility and thereby the biogas potential. In this thesis aboveground biomass from the Jena-Experiment plots was harvested in 2008 and 2009 and analysed for the most relevant chemical constituents effecting fuel quality and anaerobic digestibility. Regarding combustion, the following parameters were of main focus: higher heating value (HHV), gross energy yield (GE), ash content, ash softening temperature (AST), K, Ca, Mg, N, Cl and S content. For biogas production the following parameters were investigated: substrate specific methane yield (CH4 sub), area specific methane yield (CH4 area), crude fibre (CF), crude protein (CP), crude lipid (CL) and nitrogen-free extract (NfE). Furthermore, an improvement of the fuel quality was investigated through applying the Integrated generation of solid Fuel and Biogas from Biomass (IFBB) procedure. Through the specific setup of the Jena-Experiment it was possible to outline the changes of these parameters along two diversity gradients: (i) species richness (SR; 1 to 60 species) and (ii) functional group (grasses, legumes, small herbs and tall herbs) presence. This was a novel approach on investigating the bioenergy characteristic of extensive grassland biomass and gave detailed insight in the sward-composition¬ - bioenergy relations such as: (i) the most relevant SR effect was the increase of energy yield for both combustion (annual GE increased by 26% from SR8→16 and by 65% from SR8→60) and anaerobic digestion (annual CH4 area increased by 22% from SR8→16 and by 49% from SR8→60) through a strong interaction of SR with biomass yield; (ii) legumes play a key role for the utilization of grassland biomass for energy production as they increase the energy content of the substrate (HHV and CH4 sub) and the energy yield (GE and CH4 area); (iii) combustion is the conversion technique that will yield the highest energy output but requires an improvement of the solid fuel quality in order to reduce the risk of corrosion, emission and slagging related problems. This was achieved through applying the IFBB-procedure, with reductions in ash (by 23%), N (28%), K (85%), Cl (56%) and S (59%) and equal levels of concentrations along the SR gradient.
Resumo:
In the tropics, a large number of smallholder farms contribute significantly to food security by raising pigs and poultry for domestic consumption and for sale on local markets. The high cost and, sometimes, the lack of availability of commercial protein supplements is one of the main limitations to efficient animal production by smallholders. Locally-grown forages and grain legumes offer ecological benefits such as nitrogen fixation, soil improvement, and erosion control which contribute to improve cropping efficiency. Besides these agronomical assets, they can be used as animal feeds in mixed farming systems. In this paper we review options to include locally-grown forages and grain legumes as alternative protein sources in the diets of pigs and poultry in order to reduce farmers’ dependence on externally-purchased protein concentrates. The potential nutritive value of a wide range of forages and grain legumes is presented and discussed. The influence of dietary fibre and plant secondary metabolites contents and their antinutritive consequences on feed intake, digestive processes and animal performances are considered according to the varying composition in those compounds of the different plant species and cultivars covered in this review. Finally, methods to overcome the antinutritive attributes of the plant secondary metabolites using heat, chemical or biological treatment are reviewed regarding their efficiency and their suitability in low input farming systems.
Resumo:
An improved understanding of soil organic carbon (Corg) dynamics in interaction with the mechanisms of soil structure formation is important in terms of sustainable agriculture and reduction of environmental costs of agricultural ecosystems. However, information on physical and chemical processes influencing formation and stabilization of water stable aggregates in association with Corg sequestration is scarce. Long term soil experiments are important in evaluating open questions about management induced effects on soil Corg dynamics in interaction with soil structure formation. The objectives of the present thesis were: (i) to determine the long term impacts of different tillage treatments on the interaction between macro aggregation (>250 µm) and light fraction (LF) distribution and on C sequestration in plots differing in soil texture and climatic conditions. (ii) to determine the impact of different tillage treatments on temporal changes in the size distribution of water stable aggregates and on macro aggregate turnover. (iii) to evaluate the macro aggregate rebuilding in soils with varying initial Corg contents, organic matter (OM) amendments and clay contents in a short term incubation experiment. Soil samples were taken in 0-5 cm, 5-25 cm and 25-40 cm depth from up to four commercially used fields located in arable loess regions of eastern and southern Germany after 18-25 years of different tillage treatments with almost identical experimental setups per site. At each site, one large field with spatially homogenous soil properties was divided into three plots. One of the following three tillage treatments was carried in each plot: (i) Conventional tillage (CT) with annual mouldboard ploughing to 25-30 cm (ii) mulch tillage (MT) with a cultivator or disc harrow 10-15 cm deep, and (iii) no tillage (NT) with direct drilling. The crop rotation at each site consisted of sugar beet (Beta vulgaris L.) - winter wheat (Triticum aestivum L.) - winter wheat. Crop residues were left on the field and crop management was carried out following the regional standards of agricultural practice. To investigate the above mentioned research objectives, three experiments were conducted: Experiment (i) was performed with soils sampled from four sites in April 2010 (wheat stand). Experiment (ii) was conducted with soils sampled from three sites in April 2010, September 2011 (after harvest or sugar beet stand), November 2011 (after tillage) and April 2012 (bare soil or wheat stand). An incubation study (experiment (iii)) was performed with soil sampled from one site in April 2010. Based on the aforementioned research objectives and experiments the main findings were: (i) Consistent results were found between the four long term tillage fields, varying in texture and climatic conditions. Correlation analysis of the yields of macro aggregate against the yields of free LF ( ≤1.8 g cm-3) and occluded LF, respectively, suggested that the effective litter translocation in higher soil depths and higher litter input under CT and MT compensated in the long term the higher physical impact by tillage equipment than under NT. The Corg stocks (kg Corg m−2) in 522 kg soil, based on the equivalent soil mass approach (CT: 0–40 cm, MT: 0–38 cm, NT: 0–36 cm) increased in the order CT (5.2) = NT (5.2) < MT (5.7). Significantly (p ≤ 0.05) highest Corg stocks under MT were probably a result of high crop yields in combination with reduced physical tillage impact and effective litter incorporation, resulting in a Corg sequestration rate of 31 g C-2 m-2 yr-1. (ii) Significantly higher yields of macro aggregates (g kg-2 soil) under NT (732-777) and MT (680-726) than under CT (542-631) were generally restricted to the 0-5 cm sampling depth for all sampling dates. Temporal changes on aggregate size distribution were only small and no tillage induced net effect was detectable. Thus, we assume that the physical impact by tillage equipment was only small or the impact was compensated by a higher soil mixing and effective litter translocation into higher soil depths under CT, which probably resulted in a high re aggregation. (iii) The short term incubation study showed that macro aggregate yields (g kg-2 soil) were higher after 28 days in soils receiving OM (121.4-363.0) than in the control soils (22.0-52.0), accompanied by higher contents of microbial biomass carbon and ergosterol. Highest soil respiration rates after OM amendments within the first three days of incubation indicated that macro aggregate formation is a fast process. Most of the rebuilt macro aggregates were formed within the first seven days of incubation (42-75%). Nevertheless, it was ongoing throughout the entire 28 days of incubation, which was indicated by higher soil respiration rates at the end of the incubation period in OM amended soils than in the control soils. At the same time, decreasing carbon contents within macro aggregates over time indicated that newly occluded OM within the rebuilt macro aggregates served as Corg source for microbial biomass. The different clay contents played only minor role in macro aggregate formation under the particular conditions of the incubation study. Overall, no net changes on macro aggregation were identified in the short term. Furthermore, no indications for an effective Corg sequestration on the long term under NT in comparison to CT were found. The interaction of soil disturbance, litter distribution and the fast re aggregation suggested that a distinct steady state per tillage treatment in terms of soil aggregation was established. However, continuous application of MT with a combination of reduced physical tillage impact and effective litter incorporation may offer some potential in improving the soil structure and may therefore prevent incorporated LF from rapid decomposition and result in a higher C sequestration on the long term.
Resumo:
The fertiliser value of human urine has been examined on several crops, yet little is known about its effects on key soil properties of agronomic significance. This study investigated temporal soil salinization potential of human urine fertiliser (HUF). It further looked at combined effects of human urine and wood ash (WA) on soil pH, urine-NH_3 volatilisation, soil electrical conductivity (EC), and basic cation contents of two Acrisols (Adenta and Toje series) from the coastal savannah zone of Ghana. The experiment was a factorial design conducted in the laboratory for 12 weeks. The results indicated an increase in soil pH by 1.2 units for Adenta series and 1 unit for Toje series after one week of HUF application followed by a decline by about 2 pH units for both soil types after twelve weeks. This was attributed to nitrification of ammonium to nitrate leading to acidification. The EC otherwise increased with HUF application creating slightly saline conditions in Toje series and non-saline conditions in Adenta series. When WA was applied with HUF, both soil pH and EC increased. In contrast, the HUF alone slightly salinized Toje series, but both soils remained non-saline whenWA and HUF were applied together. The application ofWA resulted in two-fold increase in Ca, Mg, K, and Na content compared to HUF alone. Hence, WA is a promising amendment of acid soils and could reduce the effect of soluble salts in human urine fertilizer, which is likely to cause soil salinity.
Resumo:
Vegetables represent a main source of micro-nutrients which can improve the health status of malnourished poor in the world. Spinach (Spinacia oleracea L.) is a popular leafy vegetable in many countries which is rich with several important micro-nutrients. Thus, consuming Spinach helps to overcome micro-nutrient deficiencies. Pests and pathogens act as major yield constraints in food production. Root-knot nematodes, Meloidogyne species, constitute a large group of highly destructive plant pests. Spinach is found to be highly susceptible for these nematode attacks. Though agricultural production has largely benefited from modern technologies and innovations, some important dimensions which can minimize the yield losses have been neglected by most of the growers. Pre-plant or initial nematode density in soil is a crucial biotic factor which is directly responsible for crop losses. Hence, information on preplant nematode densities and the corresponding damage is of vital importance to develop successful control procedures to enhance crop production. In the present study, effect of seven initial densities of M. incognita, i.e., 156, 312, 625, 1250, 2,500, 5,000 and 10,000 infective juveniles (IJs)/plant (equivalent to 1000cm3 soil) on the growth and root infestation on potted spinach plants was determined in a screen house. In order to ensure a high accuracy, root infestation was ascertained by the number of galls formed, the percentage galled-length of feeder roots and galled-feeder roots, and egg production, per plant. Fifty days post-inoculation, shoot length and weight, and root length were suppressed at the lowest IJs density. However, the pathogenic effect was pronounced at the highest density at which 43%, 46% and 45% reduction in shoot length and weight, and root length, respectively, was recorded. The highest reduction in root weight (26%) was detected at the second highest density. The Number of galls and percentage galled-length of feeder roots/per plant showed significant progressive increase across the increasing IJs density with the highest mean value of 432.3 and 54%, respectively. The two shoot growth parameters and root length showed significant inverse relationship with the increasing gall formation. Moreover, the shoot and root length were shown to be mutually dependent on each other. Suppression of shoot growth of spinach greatly affects the grower’s economy. Hence, control measures are essentially needed to ensure a better production of spinach via reducing the pre-plant density below the level of 0.156 IJs/cm3.