7 resultados para Physiological adaptation
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
Understanding the variation in physiological response to deficit irrigation together with better knowledge on physiological characteristics of different genotypes that contribute to drought adaptation mechanisms would be helpful in transferring different irrigation technologies to farmers. A field experiment was carried to investigate the physiological response of four tomato cultivars (Fetan, Chali, Cochoro and ARP Tomato d2) to moderate water deficit induced by alternate furrow irrigation (AFI) and deficit irrigation (DI) under semi-arid condition of Ethiopia during 2013 and 2014. The study also aimed at identifying physiological attributes to the fruit yield of tomato under different deficit irrigation techniques. A factorial combination of irrigation treatments and cultivar were arranged in a complete randomized design with three replicates. Results showed that stomatal conductance (g_s) was significantly reduced while photosynthetic performance measured as chlorophyll fluorescence (Fv’/Fm’), relative water content (RWC) and leaf ash content remained unaffected under deficit irrigations. Significant differences among cultivars were found for water use efficiency (WUE), g_s, chlorophyll content (Chl_SPAD), normal difference vegetation index (NDVI), leaf ash content and fruit growth rate. However, cultivar differences in WUE were more accounted for by the regulation of g_s, therefore, g_s could be useful for breeders for screening large numbers of genotypes with higher WUE under deficit irrigation condition. The study result also demonstrated that cultivar with traits that contribute to achieve higher yields under deficit irrigation strategies has the potential to increase WUE.
Resumo:
The recent discovery of the monumental 5000 years old tower tombs on top of the up to 1850 m high Shir plateau has raised numerous questions about the economic and infrastructural basis of the agro-pastoral-piscicultural society which likely has constructed them. The scattered oasis settlement of Maqta, situated just below the towers in a rugged desert environment has therefore been studied from 2001 to 2003 to understand its prehistoric and present role along the ancient trade route which connected the inner-Omani Sharqiya across the southern Hajar mountains with the ocean port of Tiwi. Maqta consists of a central area with 59 buildings and 12 scattered temporary settlements comprising a total of about 200 semi-nomadic inhabitants and next to 900 sheep and goats. The 22 small springs with a flow rate between 5 and 1212-l h^-1 are watering 16 terrace systems totaling 4.5 ha of which 2.9 ha are planted to date palms (Phoenix dactylifera L.), 0.4 ha to wheat landraces (Triticum durum and Triticum aestivum) during the cooler winter months, 0.4 are left fallow and 0.8 h are abandoned. During a pronounced drought period from 2001 to 2003, the springs’ flow rate declined between 38% and 72%. Most of the recent buildings of the central housing area were found empty or used as temporary stores by the agro-pastoral population watching their flocks on the surrounding dry mountains. There is no indication that there ever was a settlement older than the present one. A number of Hafit (3100–2700 BC) and Umm an-Nar (2700–2000 BC) tombs just above the central housing area and further along one of the trade routes to the coast are the only indication of an old pastoral landuse in Maqta territory where oasis agriculture may have entered only well after 1000 AD. With this little evidence of existence during the 3rd millennium BC, Maqta is unlikely to have played any major role favouring the construction of the nearby monumental Shir tower tombs other than providing water for herders and their flocks, early migrant traders or tower tomb constructors.
Resumo:
Based on a case study of Charazani – Bolivia, this article outlines the understanding of adaptive strategies to cope with climate change and its impact on environmental and socioeconomic conditions that are affecting rural livelihoods. Mainly qualitative methods were used to collect and analyze data following the framework for vulnerability assessments of a socio-ecological system. Climate data reveals an increase of precipitation and temperature during the last decades. Furthermore the occurrence of extreme weather events, particularly drought, frost, hailstorms and consequently landslides and fire are increasing. Local testimonies highlight these events as the principle reasons for agricultural losses. This climatic variability and simultaneous social changes were identified as the drivers of vulnerability. Yet, several adaptive measures were identified at household, community and external levels in order to cope with such vulnerability; e.g. traditional techniques in agriculture and risk management. Gradually, farmers complement these activities with contemporary practices in agriculture, like intensification of land use, diversification of irrigation system and use of artificial fertilizers. As part of a recent trend community members are forced to search for new off-farm alternatives beyond agriculture for subsistence. Despite there is a correspondingly large array of possible adaptation measures that families are implementing, local testimonies point out, that farmers often do not have the capacity and neither the economical resources to mitigate the risk in agricultural production. Although several actions are already considered to promote further adaptive capacity, the current target is to improve existing livelihood strategies by reducing vulnerability to hazards induced by climate change.
Resumo:
Poor adaptation to climate change is a major threat to sustainable rice production in Nigeria. Determinants of appropriate climate-change adaptation strategies used by rice farmers in Southwestern Nigeria have not been fully investigated. In this study, the determinants of climate change adaptation strategies used by rice farmers in Southwestern Nigeria were investigated. Data were obtained through Focus Group Discussions (FGDs) and field survey conducted in the study areas. Data obtained were analyzed using descriptive and inferential statistical tools such as percentage and regression analysis. The major climate change adaptation strategies used by the respondents included; planting improved rice variety such as Federal Agricultural Research Oryza (FARO) (80.5 %), seeking early warning information (80.9 %), shifting planting date until the weather condition was favourable (99.1 %), and using chemical fertilizer on their farms in order to maintain soil fertility (20.5 %). The determinants of climate change adaptation strategies used by the farmers, included access to early warning information (β=43.04), access to fertilizer (β=5.78), farm plot size (β=–12.04) and access to regular water supply (β=–24.79). Climate change adaptation required provision of incentives to farmers, training on drought and flood control, and the use of improved technology to obtain higher yield.
Resumo:
Alle bisher untersuchten Lebewesen besitzen (circadiane) innere Uhren, die eine endogene Perioden-länge von ungefähr 24 Stunden generieren. Eine innere Uhr kann über Zeitgeber mit der Umwelt synchronisiert werden und ermöglicht dem Organismus, rhythmische Umweltveränderungen vorweg zu nehmen. Neben einem zentralen Schrittmacher, der Physiologie und Verhalten des Organismus steuert, gibt es in unterschiedlichen Organen auch periphere Uhren, die die zeitlichen Abläufe in der spezifischen Funktion dieser Organe steuern. In dieser Arbeit sollten zentrale und periphere Schrittmacherneurone von Insekten physiologisch untersucht und verglichen werden. Die Neurone der akzessorischen Medulla (AME) von Rhyparobia maderae dienten als Modellsystem für zentrale Schrittmacher, während olfaktorische Rezeptorneurone (ORNs) von Manduca sexta als Modellsystem für periphere Schrittmacher dienten. Die zentralen Schrittmacherneurone wurden in extrazellulären Ableitungen an der isolierten AME (Netzwerkebene) und in Patch-Clamp Experimenten an primären AME Zellkulturen (Einzelzellebene) untersucht. Auf Netzwerkebene zeigten sich zwei charakteristische Aktivitätsmuster: regelmäßige Aktivität und Wechsel zwischen hoher und niedriger Aktivität (Oszillationen). Es wurde gezeigt, dass Glutamat ein Neurotransmitter der weitverbreiteten inhibitorischen Synapsen der AME ist, und dass in geringem Maße auch exzitatorische Synapsen vorkommen. Das Neuropeptid pigment-dispersing factor (PDF), das von nur wenigen AME Neuronen exprimiert wird und ein wichtiger Kopplungsfaktor im circadianen System ist, führte zu Hemmungen, Aktivierungen oder Oszillationen. Die Effekte waren transient oder langanhaltend und wurden wahrscheinlich durch den sekundären Botenstoff cAMP vermittelt. Ein Zielmolekül von cAMP war vermutlich exchange protein directly activated by cAMP (EPAC). Auf Einzelzellebene wurde gezeigt, dass die meisten AME Neurone depolarisiert waren und deshalb nicht feuerten. Die Analyse von Strom-Spannungs-Kennlinien und pharmakologische Experimente ergaben, dass unterschiedliche Ionenkanäle vorhanden waren (Ca2+, Cl-, K+, Na+ Kanäle sowie nicht-spezifische Kationenkanäle). Starke, bei hohen Spannungen aktivierende Ca2+ Ströme (ICa) könnten eine wichtige Rolle bei Ca2+-abhängiger Neurotransmitter-Ausschüttung, Oszillationen, und Aktionspotentialen spielen. PDF hemmte unterschiedliche Ströme (ICa, IK und INa) und aktivierte nicht-spezifische Kationenströme (Ih). Es wurde angenommen, dass simultane PDF-abhängige Hyper- und Depolarisationen rhythmische Membranpotential-Oszillationen verursachen. Dieser Mechanismus könnte eine Rolle bei PDF-abhängigen Synchronisationen spielen. Die Analyse peripherer Schrittmacherneurone konzentrierte sich auf die Charakterisierung des olfaktorischen Corezeptors von M. sexta (MsexORCO). In anderen Insekten ist ORCO für die Membran-Insertion von olfaktorischen Rezeptoren (ORs) erforderlich. ORCO bildet Komplexe mit den ORs, die in heterologen Expressionssystemen als Ionenkanäle fungieren und Duft-Antworten vermitteln. Es wurde die Hypothese aufgestellt, dass MsexORCO in pheromonsensitiven ORNs in vivo nicht als Teil eines ionotropen Rezeptors sondern als Schrittmacherkanal fungiert, der unterschwellige Membranpotential-Oszillationen generiert. MsexORCO wurde mit vermeintlichen Pheromonrezeptoren in human embryonic kidney (HEK 293) Zellen coexprimiert. Immuncytochemie und Ca2+ Imaging Experimente zeigten sehr schwache Expressionsraten. Trotzdem war es möglich zu zeigen, dass MsexORCO wahrscheinlich ein spontan-aktiver, Ca2+-permeabler Ionenkanal ist, der durch den ORCO-Agonisten VUAA1 und cyclische Nucleotide aktiviert wird. Außerdem wiesen die Experimente darauf hin, dass MsexOR-1 offensichtlich der Bombykal-Rezeptor ist. Eine weitere Charakterisierung von MsexORCO in primären M. sexta ORN Zellkulturen konnte nicht vollendet werden, weil die ORNs nicht signifikant auf ORCO-Agonisten oder -Antagonisten reagierten.
Resumo:
The main objective of this thesis was to determine the potential impact of heat stress (HS) on physiological traits of lactating cows and semen quality of bulls kept in a temperate climate. The thesis is comprised of three studies. An innovative statistical modeling aspect common to all three studies was the application of random regression methodology (RRM) to study the phenotypic and genetic trajectory of traits in dependency of a continuous temperature humidity index (THI). In the first study, semen quality and quantity traits of 562 Holstein sires kept on an AI station in northwestern Germany were analyzed in the course of THI calculated from data obtained from the nearest weather station. Heat stress was identified based on a decline in semen quality and quantity parameters. The identified general HS threshold (THI = 60) and the thermoneutal zone (THI in the range from 50 to 60) for semen production were lower than detected in studies conducted in tropical and subtropical climates. Even though adult bulls were characterized by higher semen productivity compared to younger bulls, they responded with a stronger semen production loss during harsh environments. Heritabilities (low to moderate range) and additive genetic variances of semen characteristics varied with different levels of THI. Also, based on genetic correlations genotype, by environment interactions were detected. Taken together, these findings suggest the application of specific selection strategies for specific climate conditions. In the second study, the effect of the continuous environmental descriptor THI as measured inside the barns on rectal temperatures (RT), skin temperatures (ST), vaginal temperatures (VT), respiration rates (RR), and pulse rate (PR) of lactating Holstein Friesian (HF) and dual-purpose German black pied cattle (DSN) was analyzed. Increasing HS from THI 65 (threshold) to THI 86 (maximal THI) resulted in an increase of RT by 0.6 °C (DSN) and 1 °C (HF), ST by 3.5 °C (HF) and 8 °C (DSN), VT by 0.3 °C (DSN), and RR by 47 breaths / minute (DSN), and decreased PR by 7 beats / minute (DSN). The undesired effects of rising THI on physiological traits were most pronounced for cows with high levels of milk yield and milk constituents, cows in early days in milk and later parities, and during summer seasons in the year 2014. In the third study of this dissertation, the genetic components of the cow’s physiological responses to HS were investigated. Heat stress was deduced from indoor THI measurements, and physiological traits were recorded on native DSN cows and their genetically upgraded crosses with Holstein Friesian sires in two experimental herds from pasture-based production systems reflecting a harsh environment of the northern part of Germany. Although heritabilities were in a low range (from 0.018 to 0.072), alterations of heritabilities, repeatabilities, and genetic components in the course of THI justify the implementation of genetic evaluations including heat stress components. However, low repeatabilities indicate the necessity of using repeated records for measuring physiological traits in German cattle. Moderate EBV correlations between different trait combinations indicate the potential of selection for one trait to simultaneously improve the other physiological attributes. In conclusion, bulls of AI centers and lactating cows suffer from HS during more extreme weather conditions also in the temperate climate of Northern Germany. Monitoring physiological traits during warm and humid conditions could provide precious information for detection of appropriate times for implementation of cooling systems and changes in feeding and management strategies. Subsequently, the inclusion of these physiological traits with THI specific breeding values into overall breeding goals could contribute to improving cattle adaptability by selecting the optimal animal for extreme hot and humid conditions. Furthermore, the recording of meteorological data in close distance to the cow and visualizing the surface body temperature by infrared thermography techniques might be helpful for recognizing heat tolerance and adaptability in cattle.
Resumo:
Investing in global environmental and adaptation benefits in the context of agriculture and food security initiatives can play an important role in promoting sustainable intensification. This is a priority for the Global Environment Facility (GEF), created in 1992 with a mandate to serve as financial mechanism of several multilateral environmental agreements. To demonstrate the nature and extent of GEF financing, we conducted an assessment of the entire portfolio over a period of two decades (1991–2011) to identify projects with direct links to agriculture and food security. A cohort of 192 projects and programs were identified and used as a basis for analyzing trends in GEF financing. The projects and programs together accounted for a total GEF financing of US$1,086.8 million, and attracted an additional US$6,343.5 million from other sources. The value-added of GEF financing for ecosystem services and resilience in production systems was demonstrated through a diversity of interventions in the projects and programs that utilized US$810.6 million of the total financing. The interventions fall into the following four main categories in accordance with priorities of the GEF: sustainable land management (US$179.3 million), management of agrobiodiversity (US$113.4 million), sustainable fisheries and water resource management (US$379.8 million), and climate change adaptation (US$138.1 million). By aligning GEF priorities with global aspirations for sustainable intensification of production systems, the study shows that it is possible to help developing countries tackle food insecurity while generating global environmental benefits for a healthy and resilient planet.